
KSConf Documentation
Release 0.8.1

Lowell Alleman

Mar 21, 2021

Contents

1 Welcome to KSCONF! 3

2 Install 5

3 User Guide 7
3.1 Introduction . 7
3.2 Concepts . 8
3.3 Installation Guide . 10
3.4 Commands . 15
3.5 Cheat Sheet . 46
3.6 Contributing . 51
3.7 Developer setup . 53
3.8 Git tips & tricks . 55
3.9 Random . 59
3.10 Contact . 60
3.11 Command line reference . 61
3.12 Changelog . 75
3.13 Known issues . 87
3.14 Advanced Installation Guide . 88
3.15 License . 97
3.16 API Reference . 101

4 Indices and tables 133

Bibliography 135

Python Module Index 137

Index 139

i

ii

KSConf Documentation, Release 0.8.1

Author Lowell Alleman (Kintyre)

Version 0.8

Contents 1

KSConf Documentation, Release 0.8.1

2 Contents

CHAPTER1

Welcome to KSCONF!

KSCONF is a modular command line tool for Splunk admins and app developers. It’s quick and
easy to get started with basic commands and grow into the more advanced commands as needed.
Thank you for reviewing our expanding body of documentation to help smooth your transition to
a more well-managed Splunk environment and explore ways to integrate Ksconf capabilities into
your existing workflow.

We are glad you are here! No matter where you’re starting from, Ksconf can help. Let us know if
there is anything we can do to help along your journey.

– Kintyre team

3

KSConf Documentation, Release 0.8.1

4 Chapter 1. Welcome to KSCONF!

CHAPTER2

Install

Ksconf can be directly installed as a Python (via pip) or as a Splunk app. The Splunk app option is
often easier.

To install as a python package, run the following:

pip install kintyre-splunk-conf

To install the Splunk app, download the latest KSCONF App for Splunk release. Note that a one-
time registration command is needed to make ksconf executable:

splunk cmd python $SPLUNK_HOME/etc/apps/ksconf/bin/install.py

5

https://splunkbase.splunk.com/app/4383/

KSConf Documentation, Release 0.8.1

6 Chapter 2. Install

CHAPTER3

User Guide

3.1 Introduction

KSCONF (Kintyre’s Splunk Configuration tool) is a command-line tool that helps administrators and
developers manage their Splunk environments by enhancing their ability to control configuration
files. By design, the interface is modular so that each function (aka subcommand) can be learned
quickly and used independently. Most Ksconf commands are simple enough for a quick one-off job,
yet reliable enough to integrate into complex app build and deployment workflow.

Ksconf helps manage the nuances of storing Splunk apps in a version control system, such as git. It
also supports pointing live Splunk apps to a working tree, merging changes from the live system’s
(local) folder to the version controlled folder (often ‘default’), and in more complex cases, it deals
with more than one layer of “default”, which Splunk can’t handle natively.

Note: What KSCONF is not

Ksconf does not replace your existing Splunk deployment mechanisms or version control tools. The
goal is to complement and extend, not replace, the workflow that works for you.

3.1.1 Design principles

Ksconf is a toolbox. Each tool has a specific purpose and function that works independently. Bor-
rowing from the Unix philosophy, each command should do one thing well and be easily
combined to handle higher-order tasks.

When possible, be familiar. Various commands borrow from popular UNIX command line tools
such as grep and diff. The modular nature of the command and other design features were
borrowed from git and splunk as well.

7

KSConf Documentation, Release 0.8.1

Don’t impose workflow. Ksconf works with or without version control and independently of your
deployment mechanisms. If you are looking to implement these things, Ksconf is a great
building block.

Embrace automated testing. It’s impractical to check every scenario between each release, but
significant work has gone into unit testing the CLI to avoid breakage.

3.1.2 Common uses for Ksconf

• Build and package Splunk apps

• Promote changes from local to default

• Maintain multiple independent layers of configurations

• Reduce duplicate settings in a local file

• Upgrade apps stored in version control

• Merge or separate configuration files

• Git pre-commit hook for validation

• Git post-checkout hook for workflow automation

• Send .conf stanzas to a REST endpoint (Splunk Cloud or no file system access)

3.1.3 Getting started

You’re in the right place. If you are a beginner, try checking these out first:

• Cheat Sheet - Like jumping in the deep end, or prefer examples of descriptions? Start here.

• Concepts - To get a more theoretical background on why these things matter.

• Commands - Start here if you’d like a more thorough introduction.

3.2 Concepts

3.2.1 Configuration layers

The idea of configuration layers is shared across multiple actions in Ksconf. Specifically, combine
is used to merge multiple layers, and the unarchive command can be used to install or upgrade an
app in a layer-aware way.

What’s the problem?

In a typical enterprise deployment of Splunk, a single app can easily have multiple logical sources
of configuration:

1. Upstream app releases, often from Splunkbase

2. Organization-specific customizations or fixes added by a local developer

8 Chapter 3. User Guide

KSConf Documentation, Release 0.8.1

3. Fixes to buggy upstream settings, like indexes.conf, requested by your Splunk admin

4. Custom knowledge objects created by subject matter experts

Ideally we would like to version control these, but doing so is complicated because normally you
have to manage all four of these logical layers in one ‘default’ folder.

Note: Isn’t that what the local folder is for?

Splunk requires that app settings be located either in default or local; and managing local files
with version control leads to merge conflicts. So effectively, all version controlled settings need
to be in default, or risk merge conflicts. However, making changes to the default folder causes
issues when you attempt to upgrade an app upstream. See how this is a dilemma?

Let’s suppose a new upstream version is released. If you aren’t managing layers independently, then
you have to manually upgrade the app, being careful to preserve all custom configurations. Com-
pare this to the solution provided by the combine functionality. The layered approach provides an
advantage because logical sources can be stored separately in their own directories, thus allowing
them to be modified independently. Using this approach, changes in the “upstream” layer will only
come from an official release, and the organizational layer will contain customizations made solely
by your organization. Practically, this means it’s no longer necessary to comb through commit logs
identifying which custom changes need to be preserved and reapplied.

While this doesn’t completely remove the need for a person to review app upgrades, it does lower
the overhead enough that updates can be pulled in more frequently, thus minimizing divergence.

3.2.2 Minimizing files

A typical scenario:

To customize a Splunk app or add-on, many admins simply copy the conf file from default to local
and then apply changes to the local copy. That’s a common practice, but stopping there complicates
future upgrades. The next step should be to clean up the local file, deleting all the unmodified
entries that were copied from default.

Why does this matter?

If you’ve copied a default file into the local folder, this means that local file doesn’t contain only
your settings, it contains a copy of all of the default settings too. So in the future, fixes published
by the app creator are likely to be masked by your local settings. A better approach is to reduce
the local conf file leaving only the stanzas and settings that you intended to change. While this is a
monotonous to do by hand, it is easily accomplished by ksconf minimize. This makes your conf files
easier to read and simplifies upgrades.

What does Splunk have to say about this? (From the docs)

“When you first create this new version of the file, start with an empty file and add
only the attributes that you need to change. Do not start from a copy of the default
directory. If you copy the entire default file to a location with higher precedence, any
changes to the default values that occur through future Splunk Enterprise upgrades

3.2. Concepts 9

KSConf Documentation, Release 0.8.1

cannot take effect, because the values in the copied file will override the updated
values in the default file.” – [SPLKDOC1]

Tip:

It’s a good practice to minimize your files right away. If you wait, it may not be obvious
what specific version of default that local was copied from. In other words, if you
run the minimize command after you’ve upgraded the default folder, you may need to
do extra work to manually reconcile upgrade differences, because any changes made
between the initial version of the default file and the most recent release of the conf file
cannot, be automatically addressed in this fashion. If your files are all in git, and you
know a REF of the previous version of your default file, you can use some commands
like this:

Review the output of the log, and find the revision of the last change
git log --oneline -- default/inputs.conf

Assuming "e633e6" was identified as the desired baseline ref, based on the 'log'␣
→˓output

Compare what's changed in the 'inputs.conf' file between releases (FYI only)
ksconf diff <(git show e633e6:./default/inputs.conf) default/inputs.conf

Now apply the 'minimization' based on the original version of inputs.conf
ksconf minimize --target=local/inputs.conf <(git show e633e6:./default/inputs.conf)

As always, be sure to double check the results.

3.3 Installation Guide

KSCONF can be installed either as a Splunk app or a Python package. Picking the option that’s
right for you is fairly easy.

Unless you have experience with Python packaging or are planning on customizing or extending
Ksconf, then the Splunk app is likely the best place for you to start. The native Python package
works well for many developer-centric scenarios, but installation ends up being complicated for
the more typical admin-centric use-case. Therefore, most users will find it easier to start with the
Splunk app.

Note: The introduction of a Splunk app is a fairly new occurrence (as of the 0.6.x release).
Originally we resisted this idea, since ksconf was designed to manage other apps, not live within
one. Ultimately however, the packaging decision was made to ensure users of all levels can utilize
the program, as Python packaging is a mess and can be daunting for the uninitiated.

10 Chapter 3. User Guide

KSConf Documentation, Release 0.8.1

3.3.1 Overview

Install Advantages Potential pitfalls
Python package

•••••••••••••••••••••••• Most ‘pure’ and flexible
install

• One command install.
(ideal)

• Easy upgrades
• More extendable (plugins)
• Install Python package

• Lots of potential variations and
pitfalls

• Many Linux distro’s don’t ship
with pip

• Must consider/coordinate
installation user.

• Often requires some admin access.
• Too many install options

(complexity)

Splunk app
• Quick installation (single

download)
• Requires one time bootstrap

command
• Self contained; no admin

access require
• Fast demo; fight with pip

later
• Install Splunk App

• Crippled Python install (no pip)
• Can’t add custom extensions

(entrypoints)
• No CLI completion (yet)
• Grandfather Paradox

Offline package
• Security: strict review and

change control
• Advanced Installation Guide.

• Requires many steps.
• Inherits ‘Python package’ pitfalls.

3.3.2 Requirements

Python package install:

• Python Supports Python 2.7, 3.4+

• PIP (strongly recommended)

• Tested on Mac, Linux, and Windows

Splunk app install:

• Splunk 6.0 or greater is installed

3.3.3 Install Splunk App

Download and install the KSCONF App for Splunk. Then open a shell, switch to the Splunk user
account and run this one-time bootstrap command.

3.3. Installation Guide 11

https://www.python.org/downloads/
https://pip.pypa.io/en/stable/installing/
https://splunkbase.splunk.com/app/4383/

KSConf Documentation, Release 0.8.1

splunk cmd python $SPLUNK_HOME/etc/apps/ksconf/bin/install.py

On Windows, open a terminal as Administrator and type:

cd "C:\Program Files\Splunk"
bin\splunk.exe cmd python etc\apps\ksconf\bin\install.py

This will add ksconf to Splunk’s bin folder, thus making it executable either as ksconf or, less
optimally, splunk cmd ksconf. (If you can run splunk without giving it a path, then ksconf should
work too.)

At some point we may add an option for you to do this setup step from the UI.

Note: Alternate download

You can also download the latest (and pre-release) SPL from the GitHub Releases page. Download
the file named like ksconf-app_for_splunk-ver.tgz

3.3.4 Install Python package

Quick Install

Using pip:

pip install kintyre-splunk-conf

System-level install: (For Mac/Linux)

curl https://bootstrap.pypa.io/get-pip.py | sudo python - kintyre-splunk-conf

Enable Bash Completion

Context-aware autocomplete can be a great time saver. If you’re on a Mac or Linux, and would like
to enable bash completion, run these commands:

pip install argcomplete
echo 'eval "$(register-python-argcomplete ksconf)"' >> ~/.bashrc

(This option is not currently available for Splunk App installs due to a lack of documentation and
testing available presently. It should be possible. Pull requests are welcome.)

Ran into issues?

If you encounter any issues, please refer to the Advanced Installation Guide. Substantial time and
effort was placed into the assembly of the information based on various scenarios we encountered.
A good place to begin would be in the Troubleshooting section.

12 Chapter 3. User Guide

https://github.com/Kintyre/ksconf/releases

KSConf Documentation, Release 0.8.1

3.3.5 Install from GIT

If you’d like to contribute to ksconf, or just build the latest and greatest, then installing from the
git repository is a good choice. (Technically this is still installing with pip, so it’s easy to switch
between a PyPI install, and a local install.)

git clone https://github.com/Kintyre/ksconf.git
cd ksconf
pip install .

See Developer setup for additional details about contributing to ksconf.

3.3.6 Validate the install

No matter how you install ksconf, you can confirm that it’s working with the following command:

ksconf --version

The output should look something like this:

#
##

#######
##
#######
##
##

#

ksconf 0.7.3 (Build 376)
Python: 2.7.15 (/Applications/splunk/bin/python)
Git SHA1 dc94f811 committed on 2019-06-05
Installed at: /Applications/splunk/etc/apps/ksconf/bin/lib/ksconf
Written by Lowell Alleman <lowell@kintyre.co>.
Copyright (c) 2019 Kintyre Solutions, Inc, all rights reserved.
Licensed under Apache Public License v2

kintyre_splunk_conf (0.7.3)

Commands:
check (stable) OK
combine (beta) OK
diff (stable) OK
filter (alpha) OK
merge (stable) OK
minimize (beta) OK
promote (beta) OK
rest-export (beta) OK
rest-publish (alpha) OK (splunk-sdk 1.6.6)
snapshot (alpha) OK
sort (stable) OK

(continues on next page)

3.3. Installation Guide 13

KSConf Documentation, Release 0.8.1

(continued from previous page)

unarchive (beta) OK
xml-format (alpha) OK (lxml 4.2.5)

Missing 3rd party libraries

Note: Splunk app for KSCONF users don’t need to worry about this.

As of version 0.7.0, ksconf now includes commands that require external libraries. But to keep the
main package slim, these libraries aren’t strictly required unless you want the specific commands.
As part of this change, ksconf --version now reports any issues with individual commands in the
3rd column. Any value other than ‘OK’ indicates a problem. Here’s an example of the output if
you’re missing the splunk-sdk package.

...
promote (beta) OK
rest-export (beta) OK
rest-publish (alpha) Missing 3rd party module: No module named splunklib.client
snapshot (alpha) OK
...

Note that while the rest-publish command will not work in the example above, all of the other
commands will continue to work fine. If you don’t need rest-publish then there’s no need to
do anything about it. If you want the packages, install the “thirdparty” extras using the following
command:

pip install kintyre-splunk-conf[thirdparty]

Other issues

If you run into any issues, check out the Validate the install section.

3.3.7 Command line completion

Bash completion allows for a more intuitive and interactive workflow by providing quick access
to command line options and file completions. Often this saves time since the user can avoid
mistyping file names or be reminded of which command line actions and arguments are available
without switching contexts. For example, if the user types ksconf d and hits Tab, then the ksconf
diff is completed. Or if the user types ksconf, and hits Tab twice, the full list of command actions
are listed.

This feature uses the argcomplete Python package and supports Bash, zsh, tcsh.

Install via pip:

14 Chapter 3. User Guide

https://argcomplete.readthedocs.io/en/latest/

KSConf Documentation, Release 0.8.1

pip install argcomplete

Enabling command line completion for ksconf can be done in two ways. The easiest option is to
enable it for ksconf only. (However, it only works for the current user; it can break if the ksconf
command is referenced in a non-standard way.) The alternate option is to enable global command
line completion for all python scripts at once, which is preferable if you use argparse for many
python tools.

Enable argcomplete for ksconf only:

Edit your bashrc script
vim ~.bashrc

Add the following line
eval "$(register-python-argcomplete ksconf)"

Restart you shell, or just reload by running
source ~/.bashrc

To enable argcomplete globally, run the command:

activate-global-python-argcomplete

This adds a new script to your the bash_completion.d folder, which can be used for all scripts and
all users, but it does add some minor overhead to each completion command request.

OS-specific notes:

• Mac OS X: The global registration option may not work as the old version of Bash was
shipped by default. So either use the one-shot registration, or install a later version of bash
with homebrew: brew install bash then. Switch to the newer bash by default with chsh
/usr/local/bin/bash.

• Windows: Argcomplete doesn’t work on windows Bash for GIT. See argcomplete issue 142
for more info. If you really want this, use Linux subsystem for Windows instead.

3.4 Commands

The ksconf command documentation is provided in the following ways:

1. A detailed listing of each sub-command is provided in this section. This includes relevant
background descriptions, typical use cases, examples, and discussion of relevant topics. An
expanded descriptions of CLI arguments and their usage is provided here. If you have not
used a particular command before, start here.

2. The Command line reference provides a quick and convenient reference when the command
line is unavailable. The same information is available by typing ksconf <CMD> --help. This
is most helpful if you’re already familiar with a command, but need a quick refresher.

3.4. Commands 15

https://github.com/kislyuk/argcomplete/issues/142

KSConf Documentation, Release 0.8.1

Warning: Apologies for the dust

The command docs are currently undergoing reorganization. We’re considering a topical layout
rather than a per-command layout. Feedback and technical writing / organization contributions
are highly welcomed.

Table 1: Command Listing
Command Maturity Description
ksconf check stable Perform basic syntax and sanity checks on .conf files
ksconf combine beta Combine configuration files across multiple source directories

into a single destination directory. This allows for an arbitrary
number of Splunk configuration layers to coexist within a single
app. Useful in both ongoing merge and one-time ad-hoc use.

ksconf diff stable Compare settings differences between two .conf files ignoring
spacing and sort order

ksconf filter alpha A stanza-aware GREP tool for conf files
ksconf merge stable Merge two or more .conf files
ksconf minimize beta Minimize the target file by removing entries duplicated in the

default conf(s)
ksconf package alpha Create a Splunk app .spl file from a source directory
ksconf promote beta Promote .conf settings between layers using either batch or in-

teractive mode. Frequently this is used to promote conf changes
made via the UI (stored in the local folder) to a version-
controlled directory, such as default.

ksconf rest-export beta Export .conf settings as a curl script to apply to a Splunk in-
stance later (via REST)

ksconf rest-publish alpha Publish .conf settings to a live Splunk instance via REST
ksconf snapshot alpha Snapshot .conf file directories into a JSON dump format
ksconf sort stable Sort a Splunk .conf file creating a normalized format appropri-

ate for version control
ksconf unarchive beta Install or upgrade an existing app in a git-friendly and safe way
ksconf xml-format alpha Normalize XML view and nav files

3.4.1 ksconf

Ksconf: Kintyre Splunk CONFig tool

This utility handles a number of common Splunk app maintenance tasks in a small and easy to
deploy package. Specifically, this tool deals with many of the nuances with storing Splunk apps in
git and pointing live Splunk apps to a git repository. Merging changes from the live system’s (local)
folder to the version controlled (default) folder and dealing with more than one layer of “default”
are all supported tasks which are not native to Splunk.

16 Chapter 3. User Guide

KSConf Documentation, Release 0.8.1

usage: ksconf [-h] [--version] [--force-color]
{check,combine,diff,filter,merge,minimize,package,promote,rest-export,rest-

→˓publish,snapshot,sort,unarchive,xml-format}
...

Named Arguments

--version show program’s version number and exit

--force-color Force TTY color mode on. Useful if piping the output a color-aware
pager, like ‘less -R’

3.4.2 ksconf check

Provides basic syntax and sanity checking for Splunk’s .conf files. Use Splunk’s built-in btool check
for a more robust validation of attributes and values.

Consider using this utility as part of a pre-commit hook.

usage: ksconf check [-h] [--quiet] FILE [FILE ...]

Positional Arguments

FILE One or more configuration files to check. If ‘-‘ is given, then read a
list of files to validate from standard input

Named Arguments

--quiet, -q Reduce the volume of output.

See also:

Pre-commit hooks

See Pre-commit hooks for more information about how the check command can be easily integrated
in your git workflow.

How ‘check’ differs from btool’s validation

Keep in mind that idea of valid in ksconf is different than within Splunk. Specifically,

• Ksconf is more picky syntactically. Dangling stanzas and junk lines are picked up by ksconf
in general (the ‘check’ command or others), but silently by ignored Splunk.

• Btool handles content validation. The btool check mode does a great job of checking
stanza names, attribute names, and values. Btool does this well and ksconf tries to not repeat
things that Splunk already does well.

3.4. Commands 17

KSConf Documentation, Release 0.8.1

Why is this important?

Can you spot the error in this props.conf?

1 [myapp:web:access]
2 TIME_PREFIX = \[
3 SHOULD_LINEMERGE = false
4 category = Web
5 REPORT-access = access-extractions
6

7 [myapp:total:junk
8 TRANSFORMS-drop = drop-all

That’s right, line 7 contains the stanza myapp:total:junk that doesn’t have a closing]. How does
Splunk handle this? It ignores the broken stanza header completely and therefore TRANSFORMS-drop
gets added to the myapp:web:access sourcetype, which will likely result in the loss of data.

Splunk also ignores entries like this:

EVAL-bytes-(coalesce(bytes_in,0)+coalesce(bytes_out,0))

Of course here there’s no = anywhere on the line, so Splunk just assumes it’s junk and silently
ignores it.

Tip: If you want to see how different this is, run ksconf check against the system default files:

ksconf check --quiet $SPLUNK_HOME/etc/system/default/*.conf

There’s several files that ship with the core product that don’t pass this level of validation.

Note: Key concepts

Before diving into the combine command, it may be helpful to brush up on the concept of configu-
ration layers.

3.4.3 ksconf combine

Merge .conf settings from multiple source directories into a combined target directory. Configura-
tion files can be stored in a /etc/*.d like directory structure and consolidated back into a single
‘default’ directory.

This command supports both one-time operations and recurring merge jobs. For example, this
command can be used to combine all users’ knowledge objects (stored in ‘etc/users’) after a server
migration, or to merge a single user’s settings after their account has been renamed. Recurring
operations assume some type of external scheduler is being used. A best-effort is made to only
write to target files as needed.

18 Chapter 3. User Guide

KSConf Documentation, Release 0.8.1

The ‘combine’ command takes your logical layers of configs (upstream, corporate, Splunk admin
fixes, and power user knowledge objects, . . .) expressed as individual folders and merges them all
back into the single default folder that Splunk reads from. One way to keep the ‘default’ folder
up-to-date is using client-side git hooks.

No directory layout is mandatory, but taking advantages of the native-support for ‘dir.d’ layout
works well for many uses cases. This idea is borrowed from the Unix System V concept where
many services natively read their config files from /etc/*.d directories.

Version notes: dir.d was added in ksconf 0.8. Starting in 1.0 the default will switch to ‘dir.d’, so if
you need the old behavior be sure to update your scripts.

usage: ksconf combine [-h] [--target TARGET] [-m {auto,dir.d,disable}] [-q]
[-I PATTERN] [-E PATTERN] [--dry-run] [--follow-symlink]
[--banner BANNER] [--disable-marker]
source [source ...]

Positional Arguments

source The source directory where configuration files will be merged from.
When multiple source directories are provided, start with the most
general and end with the specific; later sources will override values
from the earlier ones. Supports wildcards so a typical Unix conf.d/
##-NAME directory structure works well.

Named Arguments

--target, -t Directory where the merged files will be stored. Typically either
‘default’ or ‘local’

-m, --layer-method Possible choices: auto, dir.d, disable

Set the layer type used by SOURCE.

Use dir.d if you have directories like MyApp/default.d/
##-layer-name, or use disable to manage layers explicitly
and avoid any accidental layer detection. By default, auto
mode will enable transparent switching between ‘dir.d’
and ‘disable’ (legacy) behavior.

-q, --quiet Make output a bit less noisy. This may change in the future. . .

-I, --include Name or pattern of layers to include.

-E, --exclude Name or pattern of layers to exclude from the target.

--dry-run, -D Enable dry-run mode. Instead of writing to TARGET, preview
changes as a ‘diff’. If TARGET doesn’t exist, then show the merged
file.

--follow-symlink, -l Follow symbolic links pointing to directories. Symlinks to files
are always followed.

3.4. Commands 19

KSConf Documentation, Release 0.8.1

--banner, -b A banner or warning comment added to the top of the TARGET file.
Used to discourage Splunk admins from editing an auto-generated
file.

For other on-going combine operations, it’s helpful to inform any
.conf file readers or potential editors that the file is automatically
generated and therefore could be overwritten again. For one-time
combine operations, the default banner can be suppressed by passing
in an empty string ('' or "" on Windows)

--disable-marker Prevents the creation of or checking for the .ksconf_controlled
marker file safety check. This file is typically used indicate that the
destination folder is managed by ksconf. This option should be re-
served for well-controlled batch processing scenarios.

You may have noticed similarities between the combine and merge subcommands. That’s because
under the covers they are using much of the same code. The combine operation essentially does
a recursive merge between a set of directories. One big difference is that combine command will
handle non-conf files intelligently, not just conf files. Additionally, combined can automatically
detect layers for you, depending on the layering scheme in use.

Mixing layers

Just like all layers can be managed independently, they can also be combined in any way you would
like. This also allows for different layers to be mixed-and-matched by selectively including layers to
combine. This feature is now available in ksconf 0.8.0 and later using the --include and --exclude
CLI options, which should behave as just as you’d expected.

Note: A more detailed explanation

The --include and --exclude arguments are processed in the order given. These filters are applied
to all layer names. The last match wins.

If --include is first, then by default all layers, except for the ones explicitly included, will be
excluded. Conversely, if --exclude is first, then all layers will be included except for the ones
explicitly included. If no filters are given then all layers will be processed.

Here’s an example, truncated for brevity, to further demonstrate how this can be used practically:

Splunk_TA_nix/
README.txt
bin

bandwidth.sh
common.sh

default.d
10-upstream

app.conf
data

ui

(continues on next page)

20 Chapter 3. User Guide

KSConf Documentation, Release 0.8.1

(continued from previous page)

nav
default.xml

views
setup.xml

eventtypes.conf
inputs.conf
props.conf
tags.conf
transforms.conf
web.conf

20-common
inputs.conf
props.conf
transforms.conf

30-master-apps
inputs.conf

30-shcluster-apps
inputs.conf
web.conf

lookups
nix_da_update_status.csv
nix_da_version_ranges.csv

metadata
default.meta

Here we have several named layers in play:

• 10-upstream - the layer used to contain the default app content that ships from the Splunk
TA, or whatever is “upstream” source is.

• 20-common - organizational level change to deployed everywhere.

• 30-master-apps - The bits that should just go to the indexers.

• 30-shcluster-apps - Content that should go to just the search heads.

In this case, we always want to combine the 10-* and 20-* layers, but only want to include either
the master or searchhead cluster layer depending on server role.

ksconf combine src/Splunk_TA_nix --target build/shcd/Splunk_TA_nix \
--exclude=30-* --include=30-shcluster-apps

ksconf combine src/Splunk_TA_nix --target build/cm/Splunk_TA_nix \
--exclude=30-* --include=30-master-apps

Say you just want the original app, for some reason:
ksconf combine src/Splunk_TA_nix --target /build/orig/Splunk_TA_nix --include=10-upstream

Using this technique you can pretty quickly write some simple shell scripts to build these all at
once:

for role in shcluster master
do

(continues on next page)

3.4. Commands 21

KSConf Documentation, Release 0.8.1

(continued from previous page)

ksconf combine src/Splunk_TA_nix \
--target build/${role}/Splunk_TA_nix \
--exclude=30-* --include=30-${role}-apps

done

Hopefully this gives you some ideas on how you can start to build some custom workflows with
just a few small shell scripts.

Layer methods

Ksconf supports different methods of layer detection mechanism. Right now just two different
schemes are supported, but if you have other ways of organizing your layers, please reach out.

Directory.d (dir.d) Also known as *.d directory layout is allows layers to be embed-
ded on a directory structure that allows for simple prioritization and labels to be
applied to each layer. Anyone who’s configured a Linux server should find this
familiar.

Example: MyApp/default.d/10-my_layer/props.conf

Convention: <directory-name>.d/<##>-<layer-name>/

When these layers are combined, the top level folder is modified to remove the
trailing .d, and all content from the enable layers is combined within that folder.
The layer-name portion of the path is discarded in the final combined path. Con-
tent is combined based on the assigned ranking of each layer, or directory sort
order.

Disable (legacy) If you would prefer to stick with the previous behavior (no automatic
detection of layers) and specify all SOURCE directories manually, then use this
mode. In this mode, each layer must be explicitly defined (or provide as a wild-
card) and any other files operations must be handled elsewhere.

Auto (default) In auto mode, if more than one source directory is given, then disable
mode is used, if only a single directory is given then dir.d will be used.

22 Chapter 3. User Guide

KSConf Documentation, Release 0.8.1

How do I pick?

Mode Useful when Avoid if
dir.d

•••••••• Building a full app
• If you need layers in multiple places (default.d,

and lookups.d)
• If you sometimes have no layers, then combine

falls back to a file copy

• Have existing .d
folders with other
meaning

• Have multiple source
directories.

disable
• Highly customized work flows / full-control over

combination logic
• For app build scripts.

Examples

Merging a multilayer app

Let’s assume you have a directory structure that looks like the following. This example features the
Cisco Security Suite.

Splunk_CiscoSecuritySuite/
README
default.d

10-upstream
app.conf
data

ui
nav

default.xml
views

authentication_metrics.xml
cisco_security_overview.xml
getting_started.xml
search_ip_profile.xml
upgrading.xml
user_tracking.xml

eventtypes.conf
macros.conf
savedsearches.conf
transforms.conf

20-my-org
savedsearches.conf

50-splunk-admin
indexes.conf
macros.conf
transforms.conf

70-firewall-admins
(continues on next page)

3.4. Commands 23

KSConf Documentation, Release 0.8.1

(continued from previous page)

data
ui

views
attacks_noc_bigscreen.xml
device_health.xml
user_tracking.xml

eventtypes.conf
lookups
metadata
static

In this structure, you can see several layers of configurations at play:

1. The 10-upstream layer appears to be the version of the default folder that shipped with the
Cisco app.

2. The 20-my-org layer is small and only contains tweaks to a few saved search entries.

3. The 50-splunk-admin layer represents local settings changes to specify index configurations,
and to augment the macros and transformations that ship with the default app.

4. And finally, 70-firewall-admins contains some additional view (2 new, and 1 existing). Note
that since user_tracking.xml is not a .conf file it will fully replace the upstream default
version (that is, the file in 10-upstream)

You can merge all these layers inside this app into a new app folder using the command below:

ksconf combine repo/Splunk_CiscoSecuritySuite --target=shcluster/apps/Splunk_
→˓CiscoSecuritySuite

ksconf will automatically detect the default.d folder as a layer-containing directory and merge
content from the detected layers (10-upstream, 20-my-org, . . .) into a new default folder in the
resulting app. All other content (such as README, bin, static, lookups and so on) will be copied
as-is.

Changed in version 0.8: If you are using ksconf before 0.8, then you have to manually merge the
layers, and possibly copy other top-level folders on your own (outside of ksconf). The example
below still works fine after version 0.8, but the default behavior may change in 1.0, so it’s advisable
to start using --layer-method explicitly in any scripts you may use.

Here are the commands that could be used to generate a new (merged) default folder from all of
the layers shown above.

cd Splunk_CiscoSecuritySuite
ksconf combine default.d/* --target=default

Note that in the example above, the default folder now lives along side the default.d folder. Also
note that only the contents of default.d are copied, not the entire app, like in the above example.

See also:

The unarchive command can be used to install or upgrade apps stored in a version controlled system
in a layer-aware manor.

24 Chapter 3. User Guide

KSConf Documentation, Release 0.8.1

Consolidating ‘users’ directories

The combine command can consolidate ‘users’ directory across several instances after a phased
server migration. See Migrating the ‘users’ folder.

3.4.4 ksconf diff

Compares the content differences of two .conf files

This command ignores textual differences (like order, spacing, and comments) and focuses strictly
on comparing stanzas, keys, and values. Note that spaces within any given value, will be compared.
Multi-line fields are compared in a more traditional ‘diff’ output so that long saved searches and
macros can be compared more easily.

usage: ksconf diff [-h] [-o FILE] [--comments] CONF1 CONF2

Positional Arguments

CONF1 Left side of the comparison

CONF2 Right side of the comparison

Named Arguments

-o, --output File where difference is stored. Defaults to standard out.

--comments, -C Enable comparison of comments. (Unlikely to work consistently)

Example

Add screenshot here

To use ksconf diff as an external diff tool, check out Ksconf as external difftool.

3.4.5 ksconf filter

Filter the contents of a conf file in various ways. Stanzas can be included or excluded based on a
provided filter or based on the presence or value of a key.

Where possible, this command supports GREP-like arguments to bring a familiar feel.

usage: ksconf filter [-h] [-o FILE] [--comments] [--verbose]
[--match {regex,wildcard,string}] [--ignore-case]
[--invert-match] [--files-with-matches]
[--count | --brief] [--stanza PATTERN]
[--attr-present ATTR] [--keep-attrs WC-ATTR]

(continues on next page)

3.4. Commands 25

KSConf Documentation, Release 0.8.1

(continued from previous page)

[--reject-attrs WC-ATTR]
CONF [CONF ...]

Positional Arguments

CONF Input conf file

Named Arguments

-o, --output File where the filtered results are written. Defaults to standard out.

--comments, -C Preserve comments. Comments are discarded by default.

--verbose Enable additional output.

--match, -m Possible choices: regex, wildcard, string

Specify pattern matching mode. Defaults to ‘wildcard’ allowing for
* and ? matching. Use ‘regex’ for more power but watch out for
shell escaping. Use ‘string’ to enable literal matching.

--ignore-case, -i Ignore case when comparing or matching strings. By default
matches are case-sensitive.

--invert-match, -v Invert match results. This can be used to show what content does
NOT match, or make a backup copy of excluded content.

Output mode

Select an alternate output mode. If any of the following options are used, the stanza output is not
shown.

--files-with-matches, -l List files that match the given search criteria

--count, -c Count matching stanzas

--brief, -b List name of matching stanzas

Stanza selection

Include or exclude entire stanzas using these filter options.

All filter options can be provided multiple times. If you have a long list of filters, they can be saved
in a file and referenced using the special file:// prefix. One entry per line.

--stanza Match any stanza who’s name matches the given pattern. PATTERN
supports bulk patterns via the file:// prefix.

--attr-present Match any stanza that includes the ATTR attribute. ATTR supports
bulk attribute patterns via the file:// prefix.

26 Chapter 3. User Guide

KSConf Documentation, Release 0.8.1

Attribute selection

Include or exclude attributes passed through. By default, all attributes are preserved. Allowlist
(keep) operations are preformed before blocklist (reject) operations.

--keep-attrs Select which attribute(s) will be preserved. This space separated list
of attributes indicates what to preserve. Supports wildcards.

--reject-attrs Select which attribute(s) will be discarded. This space separated list
of attributes indicates what to discard. Supports wildcards.

How is this different that btool?

Some of the things filter can do functionally overlaps with btool list. Take for example:

ksconf filter search/default/savedsearches.conf --stanza "Messages by minute last 3 hours"

Is essentially the same as:

splunk btool --app=search savedsearches list "Messages by minute last 3 hours"

The output is the same, assuming that you didn’t overwrite any part of that search in local. But if
you take off the --app argument, you’ll quickly see that btool is merging all the layers together to
show the final value of all attributes. That is certainly a helpful thing to do, but not always what
you want.

Ksconf is only going to look at the file you explicitly pointed it to. It doesn’t traverse the tree on it’s
own. This means that it works on app directory structure that live inside or outside of your Splunk
instance. If you’ve ever tried to run btool check on an app that you haven’t installed yet, then
you’ll understand the value of this.

In many other cases, the usage of both ksconf filter and btool differ significantly.

Examples

Lift and shift

Copy all indexes defined within a specific app.

cd $SPLUNK_DB
for idx in $(ksconf filter $SPLUNK_HOME/etc/app/MyApp/default/indexes.conf --brief)
do

echo "Copy index ${idx}"
tar -czf "/migrate/export-${idx}" "${idx}"

done

Now you’ll have a copy all of the necessary indexes in the /migrate folder to make MyApp work
on another Splunk instance. Of course, there’s likely other migration tasks to consider, like copying
the actual app. This is just one way ksconf can help.

3.4. Commands 27

KSConf Documentation, Release 0.8.1

Can I do the same thing with standard unix tools?

Sure, go for it!

Yes, there’s significant overlap with the filter command and what you can do with grep, awk, or sed.
Much of that is on purpose, and in fact some command line arguments were borrowed.

I used to do these tasks by hand, but it’s easy to make mistakes. The idea of ksconf is to give you
stable and reliable tools that are more suitable for .conf file work. Also keep in mind that these
features are expanding much more quickly than the unix tools change.

Although, if you’ve had to deal with BSD vs GNU tools and trying to find a set of common argu-
ments, then you probably already appreciate how awesome a domain-specific-tool like this is.

3.4.6 ksconf merge

Merge two or more .conf files into a single combined .conf file. This is similar to the way that
Splunk logically combines the default and local folders at runtime.

usage: ksconf merge [-h] [--target FILE] [--ignore-missing] [--dry-run]
[--banner BANNER]
FILE [FILE ...]

Positional Arguments

FILE The source configuration file(s) to collect settings from.

Named Arguments

--target, -t Save the merged configuration files to this target file. If not pro-
vided, the merged conf is written to standard output.

--ignore-missing, -s Silently ignore any missing CONF files.

--dry-run, -D Enable dry-run mode. Instead of writing to TARGET, preview
changes in ‘diff’ format. If TARGET doesn’t exist, then show the
merged file.

--banner, -b A banner or warning comment added to the top of the TARGET file.
Used to discourage Splunk admins from editing an auto-generated
file.

Examples

Here is an elementary example that merges all props.conf file from all of your technology addons
into a single output file:

28 Chapter 3. User Guide

KSConf Documentation, Release 0.8.1

ksconf merge --target=all-ta-props.conf etc/apps/*TA*/{default,local}/props.conf

See an expanded version of this example here: Building an all-in one TA for your indexing tier

3.4.7 ksconf minimize

See also:

See the Minimizing files for background on why this is important.

Minimize a conf file by removing any duplicated default settings.

Reduce a local conf file to only your intended changes without manually tracking which entries
you’ve edited. Minimizing local conf files makes your local customizations easier to read and often
results in cleaner upgrades.

usage: ksconf minimize [-h] [--target TARGET] [--dry-run | --output OUTPUT]
[--explode-default] [-k PRESERVE_KEY]
CONF [CONF ...]

Positional Arguments

CONF The default configuration file(s) used to determine what base set-
tings are. The base settings determine what is unnecessary to repeat
in target file.

Named Arguments

--target, -t The local file that you wish to remove duplicate settings from. This
file will be read from and then replaced with a minimized version.

--dry-run, -D Enable dry-run mode. Instead of writing and minimizing the TAR-
GET file, preview what would be removed as a ‘diff’.

--output Write the minimized output to a separate file instead of updating
TARGET.

This option can be used to preview the actual changes. Sometimes
if --dry-run mode produces too much output, it’s helpful to look
at the actual minimized version of the file in concrete form (rather
than a relative format, like a diff.) This may also be helpful in other
workflows.

--explode-default, -E Enable minimization across stanzas for special use-cases. Help-
ful when dealing with stanzas downloaded from a REST endpoint
or btool list output.

This mode will not only minimize the same stanza across multiple
config files, it will also attempt to minimize any default values stored

3.4. Commands 29

KSConf Documentation, Release 0.8.1

in the [default] or global stanza as well. For this to be effective,
it’s often necessary to include system-level defaults in the CONF list.
For example, to trim out cruft in savedsearches.conf, make sure you
add etc/system/default/savedsearches.conf as an input.

-k, --preserve-key Specify attributes that should always be kept.

Example usage

cd Splunk_TA_nix
cp default/inputs.conf local/inputs.conf

Edit 'disabled' and 'interval' settings in-place
vi local/inputs.conf

Remove all the extra (unmodified) bits
ksconf minimize --target=local/inputs.conf default/inputs.conf

Undoing a minimize

You can use ksconf merge to reverse the effect of minimize by running a command like so:

ksconf merge default/inputs.conf local/inputs.conf

Additional capabilities

For special cases, the --explode-default mode reduces duplication between entries in normal
stanzas (as normal) and then additionally reduces duplication between individual stanzas and
default entries. Typically you only need this mode if your dealing with a conf file that’s been fully
expanded to include all the layers, which doesn’t happen under normal circumstances. This does
happen anytime you download a stanza from a REST endpoint or munged together output from
btool list. If you’ve ever done this with savedsearches.conf stanzas, you’ll be painfully aware of
how massive they are! This is the exact use case that --explode-default was written for.

In such a case, it may be helpful to minimize against the full definition of default, which effectively
requires looking at all the layers of default. This includes all global app settings, and system-level
settings.

There are limitations to this approach.

• You have to manually list out all the layers. (Sometimes just pointing to the system-level
defaults is good enough)

• Minimize doesn’t take namespace into account. This means ownership, sharing, and ACLs
are ignored.

In many ways minimize mimics what Splunk does every time it updates a conf file, as dis-
cussed in How Splunk writes to conf files. If you find yourself frequently needing the power of

30 Chapter 3. User Guide

KSConf Documentation, Release 0.8.1

--explode-default, at some point a potentially better approach may be to simply post stanzas to
the REST endpoint. However, this typically does a good enough job, especially for offline scenarios.

Additionally, this command doesn’t strictly require a bloated file. For example, if disabled = 0 is
both a global default, and set on a per-stanza basis, that could be reduced too. However, typically
this isn’t super helpful.

3.4.8 ksconf package

Create a Splunk app or add on tarball (.spl) file from an app directory.

ksconf package can do useful things like, exclude unwanted files, combine layers, set the applica-
tion version and build number, drop or promote the local directory into default.

Note that some arguments, like the FILE support special values that can be automatically evaluated
at runtime. For example the placeholders {{version}} or {{git_tag}} can be expanded into the
output tarball filename.

usage: ksconf package [-h] [-f SPL] [--app-name APP_NAME]
[--blocklist BLOCKLIST] [--allowlist ALLOWLIST]
[--layer-method {auto,dir.d,disable}] [-I PATTERN]
[-E PATTERN] [--follow-symlink] [--set-version VERSION]
[--set-build BUILD]
[--allow-local | --block-local | --merge-local]
[--release-file RELEASE_FILE]
SOURCE

Positional Arguments

SOURCE Source directory for the Splunk app.

Named Arguments

-f, --file Name of splunk app file (tarball) to create. Placeholder variables in
{{var}} syntax can be used here.

--app-name Specify the top-level app folder name. If this is not given, the
app folder name is automatically extracted from the basename of
SOURCE.

--blocklist, -b Pattern for files/directories to exclude. Can be given multiple times.
You can load multiple exclusions from disk by using file://path
which can be used with .gitignore for example. (Default includes:
.git*, *.py[co], __pycache__, .DS_Store)

--allowlist, -w Remove a pattern that was previously added to the blocklist.

--follow-symlink, -l Follow symbolic links pointing to directories. Symlinks to files
are always followed.

3.4. Commands 31

KSConf Documentation, Release 0.8.1

--set-version Set application version. By default the application version is read
from default/app.conf. Placeholder variables such as {{git_tag}}
can be used here.

--set-build Set application build number.

--allow-local Allow the local folder to be kept as-is WARNING: This goes against
Splunk packaging practices, and will cause AppInspect to fail. How-
ever, this option can be useful for private package transfers between
servers, app backups, or other admin-like tasks.

--block-local Block the local folder and local.meta from the package.

--merge-local Merge any files in local into the default folder during packaging.
This is the default behavior.

Layer filtering

If the app being packaged includes multiple layers, these arguments can be used to control which
ones should be included in the final app file. If no layer options are specified, then all layers will
be included.

--layer-method Possible choices: auto, dir.d, disable

Set the layer type used by SOURCE. Additional description provided
in in the combine command.

-I, --include Name or pattern of layers to include.

-E, --exclude Name or pattern of layers to exclude from the target.

Advanced Build Options

The following options are for more advanced app building workflows.

--release-file Write the path of the newly generated archive file (SPL) after the
archive is written. This is useful in build scripts when the SPL con-
tains variables so the final name may not be known ahead of time.

Variables

The following variables are currently available for use during package building. These are refer-
enced using the {{var}} syntax. See the implementation in AppVarMagic if you’d like to contribute
additional variables.

Supported Variables

32 Chapter 3. User Guide

KSConf Documentation, Release 0.8.1

Variable Source Notes
build app.conf Get build from [install] in app.conf

version app.conf Get version from [launcher] in app.conf

git_tag git Run git describe --tags --always --dirty

git_latest_rev git Run git log -n1 --pretty=format:%h -- .

git_head git Run git rev-parse --short HEAD

Example

ksconf package -f my_app.tgz MyApp

A more realistic example where the version number in app.conf is managed by some external
process, possibly a tool like bumpversion.

bumpversion minor
ksconf package -f dist/my_app-{{version}}.tgz MyApp --release-file=.artifact
echo "Build complete, upload $(<.artifact) to SplunkBase"

This will output a message like: Build complete, upload dist/my_app-1.2.3.tgz to SplunkBase

And of course this workflow could be further automated using Splunkbase API calls.

See also

More sophisticated builds can be achieved using the BuildManager

3.4.9 ksconf promote

Propagate .conf settings applied in one file to another. Typically this is used to move local changes
(made via the UI) into another layer, such as the default or a named default.d/50-xxxxx) folder.

Promote has two modes: batch and interactive. In batch mode, all changes are applied automat-
ically and the (now empty) source file is removed. In interactive mode, the user is prompted to
select stanzas to promote. This way local changes can be held without being promoted.

NOTE: Changes are MOVED not copied, unless --keep is used.

usage: ksconf promote [-h] [--batch | --interactive | --summary] [--verbose]
[--match {regex,wildcard,string}] [--ignore-case]
[--invert-match] [--stanza PATTERN] [--force] [--keep]
[--keep-empty]
SOURCE TARGET

3.4. Commands 33

KSConf Documentation, Release 0.8.1

Positional Arguments

SOURCE The source configuration file to pull changes from. (Typically the
local conf file)

TARGET Configuration file or directory to push the changes into. (Typically
the default folder)

Named Arguments

--batch, -b Use batch mode where all configuration settings are automatically
promoted. All changes are removed from source and applied to
target. The source file will be removed unless --keep-empty is used.

--interactive, -i Enable interactive mode where the user will be prompted to approve
the promotion of specific stanzas and attributes. The user will be
able to apply, skip, or edit the changes being promoted.

--summary, -s Summarize content that could be promoted.

--verbose Enable additional output.

--force, -f Disable safety checks. Don’t check to see if SOURCE and TARGET
share the same basename.

--keep, -k Keep conf settings in the source file. All changes will be copied into
the TARGET file instead of being moved there. This is typically a
bad idea since local always overrides default.

--keep-empty Keep the source file, even if after the settings promotions the file has
no content. By default, SOURCE will be removed after all content
has been moved into TARGET. Splunk will re-create any necessary
local files on the fly.

Automatic filtering options

Include or exclude stanzas to promote using these filter options. Stanzas selected by these filters
will be promoted.

All filter options can be provided multiple times. If you have a long list of filters, they can be saved
in a file and referenced using the special file:// prefix. One entry per line.

--match, -m Possible choices: regex, wildcard, string

Specify pattern matching mode. Defaults to ‘wildcard’ allowing for
* and ? matching. Use ‘regex’ for more power but watch out for
shell escaping. Use ‘string’ to enable literal matching.

--ignore-case Ignore case when comparing or matching strings. By default
matches are case-sensitive.

34 Chapter 3. User Guide

KSConf Documentation, Release 0.8.1

--invert-match, -v Invert match results. This can be used to prevent content from
being promoted.

--stanza Promote any stanza with a name matching the given pattern. PAT-
TERN supports bulk patterns via the file:// prefix.

Warning: The promote command moves configuration settings between SOURCE and TARGET
and therefore both files are updated. This is unlike most other commands where only TARGET
is modified. Using the --keep argument will prevent SOURCE from being updated.

Modes

Promote has different modes:

Batch mode Changes are applied automatically and the (now empty) source file is
removed by default. The source file can be retained by using either the --keep or
--keep-empty arguments, see descriptions above.

Interactive mode Prompts the user to pick which stanzas and attributes to integrate.
In practice, it’s common that not all local changes will be ready to be promoted
and committed at the same time.

Hint: This mode was inspired by git add --patch command.

Summary mode Shows the user a brief breakdown of what stanzas are available for
promotion. This can be used to simply the use of the --stanza filtering options
(automatic promotion) to show the names of stanzas available for promotion. Note
that when --summary and --stanza are used at the same time, then the summary
output will include any output not already matched by --stanza filter.

Default If you haven’t specified either batch or interactive mode, you’ll be asked to pick
one at startup. You’ll be given the option to show a diff, apply all changes, or be
prompted to keep or reject changes interactively.

Automated promotions

Ksconf 0.7.8 added support for automatic stanza matching and promotion using a ksconf filter-
like CLI options.

Key features include:

Automatic promotion of stanzas One or more named stanzas can be promoted au-
tomatically using the --stanza argument. This argument can be given multiple
times to match multiples stanzas at once. In batch mode, only the named stanzas
will be promoted; but in interactive mode, the named stanzas will be promoted
first, and any content remaining to be promoted can be handled interactively.

3.4. Commands 35

KSConf Documentation, Release 0.8.1

Matching mode Like with the ksconf filter command, multiple methods of match-
ing are supported. This includes: string matching (default), wildcard (or “glob”)
matching, and regular expressions.

Inversion The --invert-match option allows for the selection to be inverted. In this
mode, it’s possible to select which stanzas should not be promoted. This can be
used as a blocklist to prevent accidental promotions.

Safety checks

Moving content between files is a potentially risky operation. Here are some of the safety mecha-
nisms that ksconf has in place to prevent data loss.

Tip: Pairing ksconf with a version control tool like git, while not required, does provide another
layer of protection against loss or corruption. If you promote and commit changes frequently, then
the scope of potential loss is reduced.

Syntax checking Strong syntax checking is enabled for both SOURCE and TARGET to
prevent mistakes, such as dangling or duplicate stanzas, which could lead to even
more corruption.

File fingerprinting Various attributes of the SOURCE and TARGET files are captured at
startup and compared again before any changes are written to disk. This reduces
the possibility of a race-condition on a live Splunk system. This mostly impacts
interactive mode because the session lasts longer. If this is a concern, run promote
only when Splunk is offline.

Same file check Attempts to promote content from a file to itself are prevented. While
logically no one would want to do this, in practice having a clear error message
saves time and confusion.

Base name check The SOURCE and TARGET should share the same base name. In
other words, trying to promote from inputs.conf into props.conf (due to a typo)
will be prevented. This matters more in batch mode. In interactive mode, it should
be pretty obvious that the type of entries don’t make sense and therefore the user
can simply exit without saving.

For scripting purposes, there may be times where pushing changes between
arbitrary-named files is helpful, so this check can be bypassed by using the --force
argument.

Note: Unfortunately, the unit testing coverage for the promote command is quite low. This is
primarily because I haven’t yet figured out how to handle unit testing for interactive CLI tools (as
this is the only interactive command to date.) I’m also not sure how much the UI may change; Any
assistance in this area would be greatly appreciated.

36 Chapter 3. User Guide

KSConf Documentation, Release 0.8.1

Examples

A simple promotion looks like this.

ksconf promote local/props.conf default/props.conf

This is equivalent to this minor shortcut.

ksconf promote local/props.conf default

In this case, ksconf determines that default is a directory and therefore assumes that you want the
same filename, props.conf in this case.

Tip: Using a directory as TARGET may seem like a trivial improvement, but in practice it greatly
reduces accidental cross-promotion of content. Therefore, we suggest its use.

Similarly, a shortcut for pushing between metadata files exists:

ksconf promote metadata/local.meta metadata

A few example of automatic promotion of a named stanza:

Single stanzas
ksconf promote local/savedsearches.conf default --stanza "My fancy search"

Wildcard promote all prod server alerts
ksconf promote local/savedsearches.conf default --match wildcard --stanza "Server␣
→˓PRD* Alert"

Automatically promote everything except for one search:
ksconf promote local/savedsearches.conf default --batch --invert-match --stanza
→˓"Local test"

Interactive mode

Keyboard shortcuts

Key Meaning Description
y Yes Apply changes
n No Don’t apply
d Diff Show the difference between the file or stanza.
q Quit Exit program. Don’t save changes.

Limitations

• Currently, an attribute-level section has not be implemented. Entire stanzas are either kept
local or promoted fully.

3.4. Commands 37

KSConf Documentation, Release 0.8.1

• Interactive mode currently lacks “help”. In the meantime, see the keyboard shortcuts listed
above.

• At present, comments in the SOURCE file will not be preserved.

• If SOURCE or TARGET is modified externally while promote is running, the entire operation
will be aborted, thus loosing any custom selections you made in interactive mode. This needs
improvement.

• There’s currently no way to preserve certain local settings with some kind of “never-promote”
flag. It’s not uncommon to have some settings in inputs.conf, for example, that you never
want to promote.

• There is no dry-run mode supported. Primarily, this is because it would only work for batch
mode, and in interactive mode you explicitly see exactly what will be changed before anything
is applied. (If you really need a dry-run for batch mode, use ksconf merge to show the result
of TARGET SOURCE combined.)

3.4.10 ksconf rest-export

Deprecated since version 0.7.0: You should consider using ksconf rest-publish instead of this one.
The only remaining valid use case for rest-export (this command) is for disconnected scenarios.
In other words, if you need to push stanzas to a Splunkd instance where you don’t (and can’t)
install ksconf, then this command may still be useful to you. In this case, ksconf rest-export can
create a shell script that you can transfer to the correct network, and then run the shell script. But
for ALL other use cases, the rest-publish command is superior.

Build an executable script of the stanzas in a configuration file that can be later applied to a running
Splunk instance via the Splunkd REST endpoint.

This can be helpful when pushing complex props and transforms to an instance where you only
have UI access and can’t directly publish an app.

usage: ksconf rest-export [-h] [--output FILE] [--disable-auth-output]
[--pretty-print] [-u | -D] [--url URL] [--app APP]
[--user USER] [--owner OWNER] [--conf TYPE]
[--extra-args EXTRA_ARGS]
CONF [CONF ...]

Positional Arguments

CONF Configuration file(s) to export settings from.

Named Arguments

--output, -t Save the shell script output to this file. If not provided, the output
is written to standard output.

-u, --update Assume that the REST entities already exist. By default, output as-
sumes stanzas are being created.

38 Chapter 3. User Guide

KSConf Documentation, Release 0.8.1

-D, --delete Remove existing REST entities. This is a destructive operation. In
this mode, stanza attributes are unnecessary and ignored. NOTE:
This works for ‘local’ entities only; the default folder cannot be up-
dated.

--url URL of Splunkd. Default: “https://localhost:8089”

--app Set the namespace (app name) for the endpoint

--user Deprecated. Use –owner instead.

--owner Set the object owner. Typically, the default of ‘nobody’ is ideal if you
want to share the configurations at the app-level.

--conf Explicitly set the configuration file type. By default, this is derived
from CONF, but sometimes it’s helpful to set this explicitly. Can be
any valid Splunk conf file type. Examples include: ‘app’, ‘props’,
‘tags’, ‘savedsearches’, etc.

--extra-args Extra arguments to pass to all CURL commands. Quote arguments
on the command line to prevent confusion between arguments to
ksconf vs curl.

Output Control

--disable-auth-output Turn off sample login curl commands from the output.

--pretty-print, -p Enable pretty-printing. Make shell output a bit more readable by
splitting entries across lines.

Warning: For interactive use only!

This command is indented for manual admin workflows. It’s quite possible that shell escaping
bugs exist that may allow full shell access if you put this into an automated workflow. Evaluate
the risks, review the code, run as a least-privilege user, and be responsible.

Roadmap

For now, the assumption is that curl command will be used. (Patches to support the Power Shell
Invoke-WebRequest cmdlet would be greatly welcomed!)

Example

ksconf rest-export --output=apply_props.sh etc/app/Splunk_TA_aws/local/props.conf

3.4. Commands 39

https://localhost:8089

KSConf Documentation, Release 0.8.1

3.4.11 ksconf rest-publish

Note: This command effectively replaces ksconf rest-export for nearly all use cases. The only thing
that rest-publish can’t do that rest-export can, is handle a disconnected scenario. But for ALL
other use cases, the rest-publish (this command) command is far superior.

Note: This commands requires the Splunk Python SDK, which is automatically bundled with the
Splunk app for KSCONF.

Publish stanzas in a .conf file to a running Splunk instance via REST. This requires access to the
HTTPS endpoint of Splunk. By default, ksconf will handle both the creation of new stanzas and the
update of existing stanzas.

This can be used to push full configuration stanzas where you only have REST access and can’t
directly publish an app.

Only attributes present in the conf file are pushed. While this may seem obvious, this fact can
have profound implications in certain situations, like when using this command for continuous
updates. This means that it’s possible for the source .conf to ultimately differ from what ends up
on the server’s .conf file. One way to avoid this, is to explicitly remove an object using --delete
mode first, and then insert a new copy of the object. Of course, this means that the object will be
unavailable. The other impact is that diffs only compares and shows a subset of attribute.

Be aware, that for consistency, the configs/conf-TYPE endpoint is used for this command. There-
fore, a reload may be required for the server to use the published config settings.

usage: ksconf rest-publish [-h] [--conf TYPE] [-m META] [--url URL]
[--user USER] [--pass PASSWORD] [-k]
[--session-key SESSION_KEY] [--app APP]
[--owner OWNER] [--sharing {user,app,global}] [-D]
CONF [CONF ...]

Positional Arguments

CONF Configuration file(s) to export settings from.

Named Arguments

--conf Explicitly set the configuration file type. By default, this is derived
from CONF, but sometimes it’s helpful to set this explicitly. Can be
any valid Splunk conf file type. Examples include: ‘app’, ‘props’,
‘tags’, ‘savedsearches’, etc.

-m, --meta Specify one or more .meta files to determine the desired read &
write ACLs, owner, and sharing for objects in the CONF file.

40 Chapter 3. User Guide

KSConf Documentation, Release 0.8.1

--url URL of Splunkd. Default: “https://localhost:8089”

--user Login username Splunkd. Default: “admin”

--pass Login password Splunkd. Default: “changeme”

-k, --insecure Disable SSL cert validation.

--session-key Use an existing session token instead of using a username and pass-
word to login.

--app Set the namespace (app name) for the endpoint

--owner Set the user who owns the content. The default of ‘nobody’ works
well for app-level sharing.

--sharing Possible choices: user, app, global

Set the sharing mode.

-D, --delete Remove existing REST entities. This is a destructive operation. In
this mode, stanza attributes are unnecessary. NOTE: This works for
‘local’ entities only; the default folder cannot be updated.

Examples

A simple example:

ksconf rest-publish etc/app/Splunk_TA_aws/local/props.conf \
--user admin --password secret --app Splunk_TA_aws --owner nobody --sharing global

This command also supports replaying metdata like ACLs:

ksconf rest-publish etc/app/Splunk_TA_aws/local/props.conf \
--meta etc/app/Splunk_TA_aws/metdata/local.meta \
--user admin --password secret --app Splunk_TA_aws

3.4.12 ksconf snapshot

Build a static snapshot of various configuration files stored within a structured json export format.
If the .conf files being captured are within a standard Splunk directory structure, then certain
metadata and namespace information is assumed based on typical path locations. Individual apps
or conf files can be collected as well, but less metadata may be extracted.

usage: ksconf snapshot [-h] [--output FILE] [--minimize] PATH [PATH ...]

Positional Arguments

PATH Directory from which to load configuration files. All .conf and .meta
file are included recursively.

3.4. Commands 41

https://localhost:8089

KSConf Documentation, Release 0.8.1

Named Arguments

--output, -o Save the snapshot to the named files. If not provided, the snapshot
is written to standard output.

--minimize Reduce the size of the JSON output by removing whitespace. Re-
duces readability.

Warning: Output NOT stable!

The output from this command hasn’t really been tested in any kind of serious way for usability.
Consider this a proof-of-concept. Anyone interested in this type of functionality should reach
out to discuss uses cases.

Example

ksconf snapshot --output=daily-$(date +%Y-%m-%d).json $SPLUNK_HOME/etc/app/

3.4.13 ksconf sort

Sort a Splunk .conf file. Sort has two modes: (1) by default, the sorted config file will be echoed to
the screen. (2) the config files are updated in-place when the -i option is used.

Manually managed conf files can be protected against changes by adding a comment containing
the string KSCONF-NO-SORT to the top of any .conf file.

usage: ksconf sort [-h] [--target FILE | --inplace] [-F] [-q] [-n LINES]
FILE [FILE ...]

Positional Arguments

FILE Input file to sort, or standard input.

Named Arguments

--target, -t File to write results to. Defaults to standard output.

--inplace, -i Replace the input file with a sorted version.

WARNING: This a potentially destructive operation that may
move/remove comments.

-n, --newlines Number of lines between stanzas.

42 Chapter 3. User Guide

KSConf Documentation, Release 0.8.1

In-place update arguments

-F, --force Force file sorting for all files, even for files containing the special
‘KSCONF-NO-SORT’ marker.

-q, --quiet Reduce the output. Reports only updated or invalid files. This is
useful for pre-commit hooks, for example.

See also:

Pre-commit hooks

See Pre-commit hooks for more information about how the sort command can be easily integrated
in your git workflow.

Examples

To recursively sort all files

find . -name '*.conf' | xargs ksconf sort -i

3.4.14 ksconf unarchive

Install or overwrite an existing app in a git-friendly way. If the app already exists, steps will be
taken to upgrade it safely.

The default folder can be redirected to another path (i.e., default.d/10-upstream or other desir-
able path if you’re using the ksconf combine tool to manage extra layers).

usage: ksconf unarchive [-h] [--dest DIR] [--app-name NAME]
[--default-dir DIR] [--exclude EXCLUDE] [--keep KEEP]
[--allow-local]
[--git-sanity-check {off,changed,untracked,ignored}]
[--git-mode {nochange,stage,commit}] [--no-edit]
[--git-commit-args GIT_COMMIT_ARGS]
SPL

Positional Arguments

SPL The path to the archive to install.

Supports tarballs (.tar.gz, .spl), and less-common zip files (.zip)

Named Arguments

--dest Set the destination path where the archive will be extracted. By
default, the current directory is used. Sane values include: etc/apps,
etc/deployment-apps, and so on.

3.4. Commands 43

KSConf Documentation, Release 0.8.1

Often this will be a git repository working tree where Splunk apps
are stored.

--app-name The app name to use when expanding the archive. By default, the
app name is taken from the archive as the top-level path included in
the archive (by convention).

Expanding archives that contain multiple (ITSI) or nested apps
(NIX, ES) is not supported.

--default-dir Name of the directory where the default contents will be stored.
This is a useful feature for apps that use a dynamic default directory
that’s created and managed by the ‘combine’ mode.

--exclude, -e Add a file pattern to exclude from extraction. Splunk’s pseudo-glob
patterns are supported here. * for any non-directory match, ... for
ANY (including directories), and ? for a single character.

--keep, -k Specify a pattern for files to preserve during an upgrade. Repeat this
argument to keep multiple patterns.

--allow-local Allow local/* and local.meta files to be extracted from the archive.

Shipping local files is a Splunk app packaging violation so local files
are blocked to prevent customizations from being overridden.

--git-sanity-check By default, git status is run on the destination folder to detect
working tree or index modifications before the unarchive process
starts, but this is configurable. Sanity check choices go from least
restrictive to most thorough:

• Use off to prevent any ‘git status’ safety checks.

• Use changed to abort only upon local modifications to files
tracked by git.

• Use untracked (the default) to look for changed and untracked
files before considering the tree clean.

• Use ignored to enable the most intense safety check which will
abort if local changes, untracked, or ignored files are found.

--git-mode Possible choices: nochange, stage, commit

Set the desired level of git integration. The default mode is stage,
where new, updated, or removed files are automatically handled for
you.

To prevent any git add or git rm commands from being run, pick
the ‘nochange’ mode.

If a git commit is incorrect, simply roll it back with git reset or fix it
with a git commit --amend before the changes are pushed anywhere
else. There’s no native --dry-run or undo for unarchive mode be-
cause that’s why you’re using git in the first place, right? (Plus, such
features would require significant overhead and unit testing.)

44 Chapter 3. User Guide

KSConf Documentation, Release 0.8.1

--no-edit Tell git to skip opening your editor on commit. By default, you will
be prompted to review/edit the commit message. (Git Tip: Delete
the content of the default message to abort the commit.)

--git-commit-args, -G Extra arguments to pass to ‘git’

Note: What if I’m not using version control?

Sanity checks and commit modes are automatically disabled if the app is being installed into a
directory that is not contained within a git working tree. Ksconf confirms that git is present and
functional before running sanity checks.

3.4.15 ksconf xml-format

Normalize and apply consistent XML indentation and CDATA usage for XML dashboards and navi-
gation files.

Technically this could be used on any XML file, but certain element names specific to Splunk’s
simple XML dashboards are handled specially, and therefore could result in unusable results.

The expected indentation level is guessed based on the first element indentation, but can be explic-
itly set if not detectable.

usage: ksconf xml-format [-h] [--indent INDENT] [--quiet] FILE [FILE ...]

Positional Arguments

FILE One or more XML files to check. If ‘-‘ is given, then a list of files is
read from standard input

Named Arguments

--indent Number of spaces. This is only used if indentation cannot be guessed
from the existing file.

--quiet, -q Reduce the volume of output.

See also:

Pre-commit hooks

See Pre-commit hooks for more information about how the xml-format command can be integrated
in your git workflow.

NOTE: While it may work on other XML files, it hasn’t been tested for other files, and therefore is
not recommended as a general-purpose XML formatter. Specific awareness of various Simple XML
tags is baked into this product.

3.4. Commands 45

KSConf Documentation, Release 0.8.1

Note: This command requires the external lxml Python module.

This package was specifically selected (over the built-in ‘xml.etree’ interface) because it (1) supports
round-trip preservation of CDATA blocks, and (2) already ships with Splunk’s embedded Python.

This is an optional requirement, unless you want to use the xml-format command. However, due to
packaging limitations and pre-commit hook support, installation of the python package will result
in an attempt to install lxml as well. Please reach out if this is causing issues for you; I’m looking
into other options too.

Why is this important?

TODO: Note the value of using <!CDATA[[]]> blocks.

Value of consistent indentation.

To recursively format xml files

find . -path '*/data/ui/views/*.xml' -o -path '*/data/ui/nav/*.xml' | ksconf xml-format -

3.5 Cheat Sheet

Here’s a quick rundown of handy ksconf commands:

Note: Note that for clarity, most of the command line arguments are given in their long form, but
many options also have a short form.

Long commands may be broken across line for readability. When this happens, a trailing backslash
(\) is added so the command could still be copied verbatim into most shells.

Contents

• Cheat Sheet

– General purpose

* Comparing files

* Sorting content

* Extract specific stanza

* Remove unwanted settings

46 Chapter 3. User Guide

KSConf Documentation, Release 0.8.1

– Cleaning up

* Reduce cruft in local

* Pushing local changes to default

– Packaging and building apps

* Quick package and install

– Advanced usage

* Migrating content between apps

* Migrating the ‘users’ folder

* Maintaining apps stored in a local git repository

– Putting it all together

* Pulling out a stanza defined in both default and local

* Building an all-in one TA for your indexing tier

3.5.1 General purpose

Comparing files

Show the differences between two conf files using ksconf diff .

ksconf diff savedsearches.conf savedsearches-mine.conf

Sorting content

Create a normalized version of a configuration file, making conf files easier to merge with git. Run
an in-place sort like so:

ksconf sort --inplace savedsearches.conf

Tip: Use the ksconf-sort pre-commit hook to do this for you.

Extract specific stanza

Say you want to grep your conf file for a specific stanza pattern:

ksconf filter search/default/savedsearches.conf --stanza 'Errors in the last *'

Say you want to list stanzas containing cron_schedule:

3.5. Cheat Sheet 47

KSConf Documentation, Release 0.8.1

ksconf filter Splunk_TA_aws/default/savedsearches.conf --brief \
--attr-present 'cron_schedule'

Remove unwanted settings

Say you want to remove vsid from a legacy savedsearches file:

ksconf filter search/default/savedsearches.conf --reject-attrs "vsid"

To see just to the schedule and scheduler status of scheduled searches, run:

ksconf filter Splunk_TA_aws/default/savedsearches.conf \
--attr-present cron_schedule \
--keep-attrs 'cron*' \
--keep-attrs enableSched
--keep-attrs disabled

3.5.2 Cleaning up

Reduce cruft in local

If you’re in the habit of copying the default files to local in the TAs you deploy, here is a quick way to
‘minimize’ your files. This will reduce the local file by removing all the default settings you copied
but didn’t change. (The importance of this is outlined in Minimizing files.)

ksconf minimize Splunk_TA_nix/default/inputs.conf --target Splunk_TA_nix/local/
→˓inputs.conf

Pushing local changes to default

App developers can push changes from the local folder to the default folder:

ksconf promote --interactive myapp/local/props.conf myapp/default/props.conf

You will be prompted to pick which items you want to promote. Alternatively, use the --batch
option to promote everything in one step, without reviewing the changes first.

3.5.3 Packaging and building apps

Quick package and install

Use the --release-file option of the package command to write out the name of the final created
tarball. This helps when the final tarball name isn’t known in advance because it contains a version
string, for example. By simply placing the latest release in a static location, this allows commonly

48 Chapter 3. User Guide

KSConf Documentation, Release 0.8.1

repeated operations, like build+install be chained together in a convienent way making iterations
quite fast from a shell.

cd my-apps
ksconf package --release-file .release kintyre_app_speedtest &&

"$SPLUNK_HOME/bin/splunk" install app "$(<.release)" -update 1

To save time, I often put the one-line version of this command (along with a first-time install
command) in a README or DEVELOPMENT file at the top-level of the app repo.

A build process for the same page, where the version is defined by the latest git tag, would look
something like this:

ksconf package -f "dist/kintyre_app_speedtest-{{version}}.tar.gz" \
--set-version="{{git_tag}}" \
--set-build=$TRAVIS_BUILD_NUMBER \
--release-file .release \
kintyre_app_speedtest

echo "Go upload $(<.release) to Splunkbase"

3.5.4 Advanced usage

Migrating content between apps

Say you want to move a bunch of savedsearches from search into a more appropriate app. First
create a file that lists all the names of your searches (one per line) in corp_searches.txt. Next,
copy just the desired stanzas, those named in the ‘corp_searches’ file, over to your new corp_app
application.

ksconf filter --match string --stanza 'file://corp_searches.txt' \
search/local/savedsearches.conf --output corp_app/default/savedsearches.conf

Now, to avoid duplication and confusion, you want to remove that exact same set of searches from
the search app.

ksconf filter --match string --stanza 'file://corp_searches.txt' \
--invert-match search/local/savedsearches.conf \
--output search/local/savedsearches.conf.NEW

Backup the original
mv search/local/savedsearches.conf \

/my/backup/location/search-savedsearches-$(date +%Y%M%D).conf

Move the updated file in place
mv search/local/savedsearches.conf.NEW search/local/savedsearches.conf

Note: Setting the matching mode to string prevents any special characters that may be present
in your search names from being interpreted as wildcards.

3.5. Cheat Sheet 49

KSConf Documentation, Release 0.8.1

Migrating the ‘users’ folder

Say you stood up a new Splunk server and the migration took longer than expected. Now you have
two users folders and don’t want to loose all the goodies stored in either one. You’ve copied the
users folder to user_old. You’re working from the new server and would generally prefer to keep
whatever is on the new server over what is on the old. (This is because some of your users copied
over some of their critical alerts manually while waiting for the migration to complete, and they’ve
made updates they don’t want to lose.)

After stopping Splunk on the new server, run the following commands.

mv /some/share/users_old $SPLUNK_HOME/etc/users.old
mv $SPLUNK_HOME/etc/users $SPLUNK_HOME/etc/users.new

ksconf combine $SPLUNK_HOME/etc/users.old $SPLUNK_HOME/etc/users.new \
--target $SPLUNK_HOME/etc/users --banner ''

Now double check the results and start Splunk.

We use the --banner option here to essential disable an output banner. Because, in this case, the
combine operation is a one-time job and therefore no warning is needed.

Maintaining apps stored in a local git repository

ksconf unarchive

3.5.5 Putting it all together

Pulling out a stanza defined in both default and local

Say you wanted to count the number of searches containing the word error

ksconf merge default/savedsearches.conf local/savedsearches.conf \
| ksconf filter - --stanza '*Error*' --ignore-case --count

This is a simple example of chaining two basic ksconf commands together to perform a more
complex operation. The first command handles the merge of default and local savedsearches.
conf into a single output stream. The second command filters the resulting stream finding stanzas
containing the word ‘Error’.

Building an all-in one TA for your indexing tier

Say you need to build a single TA containing all the index-time settings for your indexing tier.
(Note: Enterprise Security does something similar when generating the indexer app.)

50 Chapter 3. User Guide

KSConf Documentation, Release 0.8.1

ksconf merge etc/apps/*TA*/{default,local}/props.conf \
| ksconf filter --output=TA-for-indexers/default/props.conf \

--include-attr 'TRANSFORMS*' \
--include-attr 'TIME_*' \
--include-attr 'MUST_BREAK*' \
--include-attr 'SHOULD_LINEMERGE' \
--include-attr 'EVENT_BREAKER*' \
--include-attr 'LINE_BREAKER*'

This example is incomplete because it doesn’t list every index-time props.conf attribute, and leaves
out transforms.conf and fields.conf, but hopefully you get the idea.

3.6 Contributing

Pull requests are greatly welcome! If you plan on contributing code back to the main ksconf repo,
please follow the standard GitHub fork and pull-request work-flow. We also ask that you enable a
set of git hooks to help safeguard against avoidable issues.

3.6.1 Pre-commit hook

The ksconf project uses the pre-commit hook to enable the following checks:

• Fixes trailing whitespace, EOF, and EOLs

• Confirms python code compiles (AST)

• Blocks the committing of large files and keys

• Rebuilds the dynamic portions of the docs related to the CLI.

• Confirms that all unit tests pass. (Currently, this is the same test run by Travis CI, but since
tests complete in under 5 seconds, the run-everywhere approach seems appropriate for now.
Eventually, the local testing will likely become a subset of the full test suite.)

Note: Multiple uses of pre-commit

Be aware, that the ksconf repo both uses pre-commit for validation of it’s own content, and it
provides a pre-commit hook service definition for other repos. The first scenario is discussed in this
section of the guide. The second scenario is for repositories that house Splunk apps to use ksconf
check and ksconf sort as easy to use hooks against their own .conf files which is discussed further
in Pre-commit hooks.

Installing the pre-commit hook

To ensure your changes comply with the ksconf coding standards, please install and activate pre-
commit.

3.6. Contributing 51

https://pre-commit.com/
https://github.com/Kintyre/ksconf
https://pre-commit.com/
https://pre-commit.com/

KSConf Documentation, Release 0.8.1

Install:

sudo pip install pre-commit

Register the pre-commit hooks (one time setup)
cd ksconf
pre-commit install --install-hooks

Install gitlint

Gitlint will check to ensure that commit messages are in compliance with the standard subject,
empty-line, and body format. You can enable it with:

gitlint install-hook

3.6.2 Refresh module listing

After making changes to the module hierarchy or simply adding new commands, refresh the listing
for the autodoc extension by running the following command. Note that this may not remove old
packages.

sphinx-apidoc --force -o "docs/source/api" ksconf 'ksconf/ext'

3.6.3 Create a new subcommand

Checklist:

1. Create a new module in ksconf.commands.<CMD>.

• Create a new class derived from KsconfCmd. You must, at a minimum, define the follow-
ing methods:

– register_args() to setup any config parser inputs.

– run() which handles the actual execution of the command.

2. Register a new entrypoint configuration in the setup_entrypoints.py script. Edit the
_entry_points dictionary to add an entry for the new command.

• Each entry must include command name, module, and implementation class.

3. Create unit tests in test/test_cli_<CMD>.py.

4. Create documentation in docs/source/cmd_<CMD>.rst. You’ll want to build the docs locally
to make sure everything looks correct. Part of the documentation is automatically generated
from the argparse arguments defined in the register_args() method, but other bits need to
be spelled out explicitly.

When in doubt, it may be helpful to look back over history in git for other recently added commands
and use that as an example.

52 Chapter 3. User Guide

https://jorisroovers.github.io/gitlint/

KSConf Documentation, Release 0.8.1

Here’s an overview of paths you should expect to update:

File path Description / purpose

ksconf/commands/fancy.
py

The core python code and CLI interface

tests/tests/
test_cli_CMD.py

Add new unit test here

docs/source/cmd_CMD.rst Command line documentation. Make sure to include the argparse
module

ksconf/
setup_entrypoints.py

Addd a new entrypoint line here, or the new command won’t be
registered

.pre-commit-hooks.yaml Only needed if the new command is a command is pre-commit
hook

setup.py Update if there are any new external dependencies
requirements.txt Same as above
make_splunk_app If there’s new dependencies that need to go into the Splunk app

3.6.4 Cookiecutter options

The following example assume we’re make a new command called asciiart:

git clone https://github.com/Kintyre/ksconf.git
cd ksconf

Kick off a cookiecutter (promt submodule: asciiart)
cookiecutter https://github.com/Kintyre/ksconf.git -c cookiecutter-subcommand

cp ksconf-asciiart/* .

git add ksconf/commands/*.py docs/source/cmd_*.rst tests/test_cli*.py

Merge that one line into entrypoints
vim ksconf/setup_entrypoints*.py
git add kconf/setup_entrypoints.py

Now run-precomit to ensure that the new command is found sucessfully and is importable

pre-commit
Now go write code, tests, docs and commit ...

3.7 Developer setup

The following steps highlight the developer install process.

3.7. Developer setup 53

KSConf Documentation, Release 0.8.1

3.7.1 Tools

If you are a developer, then we strongly suggest installing into a virtual environment to prevent
overwriting the production version of ksconf and for the installation of the developer tools. (The
virtualenv name ksconfdev-pyve is used below, but this can be whatever suites, just make sure not
to commit it.)

Setup and activate virtual environment
virtualenv ksconfdev-pyve
. ksconfdev-pyve/bin/activate

Install developer packages
pip install -r requirements-dev.txt

3.7.2 Install ksconf

git clone https://github.com/Kintyre/ksconf.git
cd ksconf
pip install .

3.7.3 Building the docs

cd ksconf
. ksconfdev-pyve/bin/activate

cd docs
make html
open build/html/index.html

If you are actively editing the docs, and would like changes to be updated in your browser as you
save changes .rst files, then use the script in the root directory:

./make_docs

If you’d like to build PDF, then you’ll need some extra tools. On Mac, you may also want to install
the following (for building docs, etc.):

brew install homebrew/cask/mactex-no-gui

3.7.4 Running TOX

Local testing across multiple versions of python can be accomplished with tox and pyenv. See the
online docs for theses tools for more details.

Tox and pyenv can be run like so:

54 Chapter 3. User Guide

https://tox.readthedocs.io/en/latest/
https://github.com/pyenv/pyenv

KSConf Documentation, Release 0.8.1

Install the necessary python versions
pyenv install 2.7.17
...
pyenv install 3.8.1

Set specific default version of python for each major/minor release (tab completion is␣
→˓your friend here)
pyenv local 2.7.17 ... 3.8.1

Run tox for ALL python versions
tox

Run tox for just a specific python version
tox -e py38

Some additional information about how to setup and run these tests can be gleaned from the
Vagrantfile and Dockerfile in the root of the git repository, though specific python versions con-
tained there may be quite out of date.

3.8 Git tips & tricks

3.8.1 Pre-commit hooks

Ksconf is setup to work as a pre-commit plugin. To use ksconf in this manner, simply configure the
ksconf repo in your pre-commit configuration file. If you haven’t done any of this before, it’s not
difficult to setup but is beyond the scope of this guide. We suggest that you read the pre-commit
docs and review this section when you are ready to setup the hooks.

Hooks provided by ksconf

Three hooks are currently defined by the ksconf repository:

ksconf-check Runs ksconf check to perform basic validation tests against all files in your
repo that end with .conf or .meta. Any errors will be reported by the UI at commit
time and you’ll be able to correct mistakes before bogus files are committed into
your repo. If you’re not sure why you’d need this, check out Why validate my conf
files?

ksconf-sort Runs ksconf sort to normalize any of your .conf or .meta files which will
make diffs more readable and merging more predictable. As with any hook, you
can customize the filename pattern of which files this applies to. For example, to
manually organize props.conf files, simply add the exclude setting. See Example
below.

ksconf-xml-format: Runs ksconf xml-format to apply consistency to your XML repre-
sentations of Simple XML dashboards and navigation files. Formatting includes
appropriate indention and the automatic addition of <![CDATA[...]]> blocks, as
needed, to reduce the need for XML escaping, resulting in more readable source

3.8. Git tips & tricks 55

https://pre-commit.com/

KSConf Documentation, Release 0.8.1

file. By default, this hook looks at standard locations where XML views and nav-
igation typically live. So if you use Advanced XML, proceed with caution, as they
share the same path and haven’t been tested.

Configuring pre-commit hooks in you repo

To add ksconf pre-commit hooks to your repository, add the following content to your .
pre-commit-config.yaml file:

repos:
- repo: https://github.com/Kintyre/ksconf
rev: v0.7.7
hooks:
- id: ksconf-check
- id: ksconf-sort
- id: ksconf-xml-format

For general reference, here’s a copy of what we frequently use for our repos.

- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v2.0.0
hooks:
- id: trailing-whitespace
exclude: README.md

- id: end-of-file-fixer
exclude: README.md$

- id: check-json
- id: check-xml
- id: check-ast
- id: check-added-large-files
args: ['--maxkb=50']

- id: check-merge-conflict
- id: detect-private-key
- id: mixed-line-ending
args: ['--fix=lf']

- repo: https://github.com/Kintyre/ksconf
rev: v0.7.7
hooks:
- id: ksconf-check
- id: ksconf-sort
exclude: (props|logging)\.conf

- id: ksconf-xml-format

Tip: You should update rev to the most currently released stable version. Upgrading this frequently
isn’t typically necessary since these two operations are pretty basic and stable. However, it’s still a
good idea to review the change log to see what, if any, pre-commit functionality was updated.

Note: Sometimes pre-commit can get in the way.

56 Chapter 3. User Guide

KSConf Documentation, Release 0.8.1

Instead of disabling it entirely, it’s often better to disable the specific rule that’s causing an issue
using the SKIP environmental variable. So for example, if intentionally adding a file over 50 Kb, a
command like this will allow all the other rules to still run.

SKIP=check-added-large-file git commit -m "Refresh lookup files for bogus TA"

This and other tricks are fully documented in the pre-commit docs. However, this comes up fre-
quently enough that it’s worth repeating here.

Should my version of ksconf and pre-commit plugins be the same?

If you’re running both ksconf locally as well as the ksconf pre-commit plugin, then technically you
have ksconf installed twice. That may sound less than ideal, but practically, this isn’t a problem.
As long as the version of the ksconf CLI tool is close to the rev listed in .pre-commit-config.yaml,
then everything should work fine.

Our suggestion:

1. Keep versions in the same major.minor release range or bump the version every 6-12 months.

2. Check the changelog for any pre-commit related changes or compatibility concerns.

While keeping ksconf CLI versions in sync across your environment is recommended, it doesn’t
matter as much for the pre-commit plugin. Why?

1. The pre-commit plugin offers a small subset of overall ksconf functionality.

2. The exposed functionality is stable and changes infrequently.

3. Updating pre-commit too frequently may cause unnecessary delays if you have a large team
or high number of git clones throughout your environment, as each one will have to wait and
upgrade the next time pre-commit is kicked off.

3.8.2 Git configuration tweaks

Ksconf as external difftool

Use ksconf diff as an external difftool provider for git. Edit ~/.gitconfig and add the following
entries:

[difftool "ksconf"]
cmd = "ksconf --force-color diff \"$LOCAL\" \"$REMOTE\" | less -R"

[difftool]
prompt = false

[alias]
ksdiff = "difftool --tool=ksconf"

Now you can run this new git alias to compare files in your directory using the ksconf diff feature
instead of the default textual diff that git provides. This is especially helpful if the ksconf-sort pre-
commit hook hasn’t been enabled.

3.8. Git tips & tricks 57

https://pre-commit.com/

KSConf Documentation, Release 0.8.1

git ksdiff props.conf

Tip: Wonky version of git?

If you find yourself in the situation where git-difftool hasn’t been fully installed correctly (or the
Perl extensions are missing), then here’s a workaround option for you.

ksconf diff <(git show HEAD:./props.conf) props.conf

Take note of the relative path prefix ./. In practice, this can be problematic.

Stanza aware textual diffs

Make git diff show the ‘stanza’ on the @@ output lines.

Note: How does git know that?

Ever wonder how git diff is able to show you the name of the function or method where changes
were made? This works for many programming languages out of the box. If you’ve ever spent much
time looking at diffs, that additional context is invaluable. As it turns out, this is customizable by
adding a stanza matching regular expression with a file pattern match.

Simply add the following settings to your git configuration:

[diff "conf"]
xfuncname = "^(\\[.*\\])$"

Then register this new ability with specific file patterns using git’s attributes feature. Edit ~/.
config/git/attributes and add:

*.conf diff=conf
*.meta diff=conf

Note: Didn’t work as expected?

Be aware that the location for your global-level attributes may be different. Use the
following command to test if the settings have been applied.

git check-attr -a -- *.conf

Test to make sure the xfuncname attribute was set as expected:

git config diff.conf.xfuncname

58 Chapter 3. User Guide

KSConf Documentation, Release 0.8.1

3.9 Random

3.9.1 Typographic and Convention

Pronounced: k·s·knf

Capitalization:

Form Acceptability factor
ksconf Always lower for CLI. Generally preferred.
KSCONF Okay for titles.
Ksconf Title case is okay too.
KSConf You’ll see this, but weird.
KSconf Just proper nouns capitalized
KsConf No, except maybe in a class name?
KsconF Thought about it. No go! Reserved for ASCII art ONLY

I wrote this while laughing at my own lack of consistency.
– Lowell

3.9.2 How Splunk writes to conf files

Splunk does some counter intuitive thing when it writes to local conf files.

For example,

1. All conf file updates are automatically minimized. Splunk never has to write the entire con-
tents because updates only happen to “local” files.

2. Modified stanzas are sometimes rewritten in place, and other times removed from the current
position and moved to the bottom of the .conf file. This behavior appears to vary based on
what REST endpoint is used to initiate the update.

3. New stanzas are written with attributes sorted lexicographically. When a stanza is updated in
place, the modified attributes may be updated in place and new entires are typically added at
the bottom of the stanza.

4. Sometimes boolean values persist in unexpected ways. Primarily this is because there’s more
than one way to represent them textually, and that textual representation is different than
what’s stored in default. Often, literal values are passed through a conf REST POST so they
make it to disk, but when read, are translated into booleans.

Essentially, Splunk will always “minimize” the conf file at each update. This is because Splunk
internally keeps track of the final representation of the entire stanza (in memory), and only when
it’s written to disk does Splunk care about the current contents of the local file. In fact, Splunk
re-reads the conf file immediately before updating it. This is why, if you’ve made a local changes
and forgot to reload, Splunk will typically not lose your changes. (Unless you’ve updated the same
attribute both places. . . I mean, it’s not magic.)

3.9. Random 59

KSConf Documentation, Release 0.8.1

Tip: Don’t believe me? Try it yourself.

To prove that it works this way, simply find a saved search that you modified from any app that
you installed. Look at the local conf file and observe your changes. Now, go edit the saved search
and restore some attribute to it’s original value; the most obvious one here would be the search
attribute, but that’s tricky if it’s multiple lines. Now, go look at the local conf file again. If you’ve
updated it with exactly the same value, then that attribute will have been completely removed from
the local file. This is in fact a neat trick that can be used to revert local changes to allow future
updates to “pass-though” unimpeded. In SHC scenarios, this may be your only option to remove
local settings.

Okay, so what’s the value in having a minimize command if Splunk does this automatically ev-
ery time it’s makes a change? Well, simply put, because Splunk can’t write to all local file loca-
tions. Splunk only writes to the local folders of system, etc/users, and etc/apps (and sometimes to
deployment-apps app.conf local file, but that’s a different topic).

Also, there are times where boolean values will show up in an unexpected manor because of how
Splunk treats them internally. It isn’t certain if this is a silly mistake in the default .conf files or a
clever workaround to what’s essentially a design flaw in the conf system. Either way, we suspect the
user benefits. Because Splunk accepts more values as boolean than what it will write out, certain
boolean values will always be explicitly stored in the conf files. This means that disabled and
several other settings in savedsearches.conf always get explicitly written. How is that helpful?
Well, imagine what would happen if you accidentally changed disabled = 1 in the global stanzas
in savedsearches.conf. Well, nothing if all savedsearches have that values explicitly written. The
point is this: there are times when repeating yourself isn’t a bad thing. (Incidentally, this is the
reason for the --preserve-key flag on the minimize command.)

3.9.3 Grandfather Paradox

The KSCONF Splunk app disadvantageously breaks it’s designed paradigm. Ksconf was designed to
be the program that manages all your other apps, so by deploying ksconf as an app itself, we open
up the possibility that ksconf could upgrade, deploy, or manage itself. Basically, it could cut off the
limb that it’s standing on. Practically, this can get messy, especially if you’re on Windows, where
file locking is also likely to cause issues.

So sure, if you want to be picky, “Grandfather paradox” is probably the wrong analogy. Pull requests
are welcome.

3.10 Contact

If you have questions, concerns, ideas about the product or how to make it better, please let us
know!

Here are some ways to get in contact with us and other KSCONF users:

• Chat about #ksconf on Splunk’s Slack channel.

60 Chapter 3. User Guide

https://splunk-usergroups.slack.com

KSConf Documentation, Release 0.8.1

• Discuss features or ask general questions in GitHub discussions. This is new, please drop by
and let us know if this is helpful or not.

• Email us at hello@kintyre.co for general inquiries, if you’re interested in commercial support,
or would like to fund new features.

• Ask a question on

– Splunk Answers

– GitHub

3.11 Command line reference

KSCONF supports the following CLI options:

3.11.1 ksconf

usage: ksconf [-h] [--version] [--force-color]
{check,combine,diff,package,filter,promote,merge,minimize,snapshot,

→˓sort,rest-export,rest-publish,unarchive,xml-format}
...

Ksconf: Kintyre Splunk CONFig tool

This utility handles a number of common Splunk app maintenance tasks in a small
and easy to deploy package. Specifically, this tool deals with many of the
nuances with storing Splunk apps in git and pointing live Splunk apps to a git
repository. Merging changes from the live system's (local) folder to the
version controlled (default) folder and dealing with more than one layer of
"default" are all supported tasks which are not native to Splunk.

positional arguments:
{check,combine,diff,package,filter,promote,merge,minimize,snapshot,sort,rest-

→˓export,rest-publish,unarchive,xml-format}
check Perform basic syntax and sanity checks on .conf files
combine Combine configuration files across multiple source

directories into a single destination directory. This
allows for an arbitrary number of Splunk configuration
layers to coexist within a single app. Useful in both
ongoing merge and one-time ad-hoc use.

diff Compare settings differences between two .conf files
ignoring spacing and sort order

package Create a Splunk app .spl file from a source directory
filter A stanza-aware GREP tool for conf files
promote Promote .conf settings between layers using either

batch or interactive mode. Frequently this is used to
promote conf changes made via the UI (stored in the
'local' folder) to a version-controlled directory,
such as 'default'.

(continues on next page)

3.11. Command line reference 61

https://github.com/Kintyre/ksconf/discussions
mailto:hello@kintyre.co
https://answers.splunk.com/app/questions/4383.html
https://github.com/Kintyre/ksconf/issues/new?labels=question

KSConf Documentation, Release 0.8.1

(continued from previous page)

merge Merge two or more .conf files
minimize Minimize the target file by removing entries

duplicated in the default conf(s)
snapshot Snapshot .conf file directories into a JSON dump

format
sort Sort a Splunk .conf file creating a normalized format

appropriate for version control
rest-export Export .conf settings as a curl script to apply to a

Splunk instance later (via REST)
rest-publish Publish .conf settings to a live Splunk instance via

REST
unarchive Install or upgrade an existing app in a git-friendly

and safe way
xml-format Normalize XML view and nav files

optional arguments:
-h, --help show this help message and exit
--version show program's version number and exit
--force-color Force TTY color mode on. Useful if piping the output a

color-aware pager, like 'less -R'

3.11.2 ksconf check

usage: ksconf check [-h] [--quiet] FILE [FILE ...]

Provides basic syntax and sanity checking for Splunk's .conf files. Use
Splunk's built-in 'btool check' for a more robust validation of attributes and
values. Consider using this utility as part of a pre-commit hook.

positional arguments:
FILE One or more configuration files to check. If '-' is given, then

read a list of files to validate from standard input

optional arguments:
-h, --help show this help message and exit
--quiet, -q Reduce the volume of output.

3.11.3 ksconf combine

usage: ksconf combine [-h] [--target TARGET] [-m {auto,dir.d,disable}] [-q]
[-I PATTERN] [-E PATTERN] [--dry-run] [--follow-symlink]
[--banner BANNER] [--disable-marker]
source [source ...]

Merge .conf settings from multiple source directories into a combined target
directory. Configuration files can be stored in a '/etc/*.d' like directory
structure and consolidated back into a single 'default' directory.

(continues on next page)

62 Chapter 3. User Guide

KSConf Documentation, Release 0.8.1

(continued from previous page)

This command supports both one-time operations and recurring merge jobs. For
example, this command can be used to combine all users' knowledge objects (stored
in 'etc/users') after a server migration, or to merge a single user's settings
after their account has been renamed. Recurring operations assume some type
of external scheduler is being used. A best-effort is made to only write to
target files as needed.

The 'combine' command takes your logical layers of configs (upstream, corporate,
Splunk admin fixes, and power user knowledge objects, ...) expressed as
individual folders and merges them all back into the single 'default' folder
that Splunk reads from. One way to keep the 'default' folder up-to-date is
using client-side git hooks.

No directory layout is mandatory, but taking advantages of the native-support
for 'dir.d' layout works well for many uses cases. This idea is borrowed from
the Unix System V concept where many services natively read their config files
from '/etc/*.d' directories.

Version notes: dir.d was added in ksconf 0.8. Starting in 1.0 the default will
switch to 'dir.d', so if you need the old behavior be sure to update your scripts.

positional arguments:
source The source directory where configuration files will be

merged from. When multiple source directories are
provided, start with the most general and end with the
specific; later sources will override values from the
earlier ones. Supports wildcards so a typical Unix
'conf.d/##-NAME' directory structure works well.

optional arguments:
-h, --help show this help message and exit
--target TARGET, -t TARGET

Directory where the merged files will be stored.
Typically either 'default' or 'local'

-m {auto,dir.d,disable}, --layer-method {auto,dir.d,disable}
Set the layer type used by SOURCE. Use 'dir.d' if you
have directories like 'MyApp/default.d/##-layer-name',
or use 'disable' to manage layers explicitly and avoid
any accidental layer detection. By default, 'auto'
mode will enable transparent switching between 'dir.d'
and 'disable' (legacy) behavior.

-q, --quiet Make output a bit less noisy. This may change in the
future...

-I PATTERN, --include PATTERN
Name or pattern of layers to include.

-E PATTERN, --exclude PATTERN
Name or pattern of layers to exclude from the target.

--dry-run, -D Enable dry-run mode. Instead of writing to TARGET,
preview changes as a 'diff'. If TARGET doesn't exist,
then show the merged file.

--follow-symlink, -l Follow symbolic links pointing to directories.
Symlinks to files are always followed.

(continues on next page)

3.11. Command line reference 63

KSConf Documentation, Release 0.8.1

(continued from previous page)

--banner BANNER, -b BANNER
A banner or warning comment added to the top of the
TARGET file. Used to discourage Splunk admins from
editing an auto-generated file.

--disable-marker Prevents the creation of or checking for the
'.ksconf_controlled' marker file safety check. This
file is typically used indicate that the destination
folder is managed by ksconf. This option should be
reserved for well-controlled batch processing
scenarios.

3.11.4 ksconf diff

usage: ksconf diff [-h] [-o FILE] [--comments] CONF1 CONF2

Compares the content differences of two .conf files

This command ignores textual differences (like order, spacing, and comments) and
focuses strictly on comparing stanzas, keys, and values. Note that spaces within
any given value, will be compared. Multi-line fields are compared in a more␣
→˓traditional
'diff' output so that long saved searches and macros can be compared more easily.

positional arguments:
CONF1 Left side of the comparison
CONF2 Right side of the comparison

optional arguments:
-h, --help show this help message and exit
-o FILE, --output FILE

File where difference is stored. Defaults to standard
out.

--comments, -C Enable comparison of comments. (Unlikely to work
consistently)

3.11.5 ksconf package

usage: ksconf package [-h] [-f SPL] [--app-name APP_NAME]
[--blocklist BLOCKLIST] [--allowlist ALLOWLIST]
[--layer-method {auto,dir.d,disable}] [-I PATTERN]
[-E PATTERN] [--follow-symlink] [--set-version VERSION]
[--set-build BUILD]
[--allow-local | --block-local | --merge-local]
[--release-file RELEASE_FILE]
SOURCE

Create a Splunk app or add on tarball ('.spl') file from an app directory.
'ksconf package' can do useful things like, exclude unwanted files, combine

(continues on next page)

64 Chapter 3. User Guide

KSConf Documentation, Release 0.8.1

(continued from previous page)

layers, set the application version and build number, drop or promote the
'local' directory into 'default'. Note that some arguments, like the 'FILE'
support special values that can be automatically evaluated at runtime. For
example the placeholders '{{version}}' or '{{git_tag}}' can be expanded into
the output tarball filename.

positional arguments:
SOURCE Source directory for the Splunk app.

optional arguments:
-h, --help show this help message and exit
-f SPL, --file SPL Name of splunk app file (tarball) to create.

Placeholder variables in '{{var}}' syntax can be used
here.

--app-name APP_NAME Specify the top-level app folder name. If this is not
given, the app folder name is automatically extracted
from the basename of SOURCE.

--blocklist BLOCKLIST, -b BLOCKLIST
Pattern for files/directories to exclude. Can be given
multiple times. You can load multiple exclusions from
disk by using 'file://path' which can be used with
'.gitignore' for example. (Default includes: '.git*',
'*.py[co]', '__pycache__', '.DS_Store')

--allowlist ALLOWLIST, -w ALLOWLIST
Remove a pattern that was previously added to the
blocklist.

--follow-symlink, -l Follow symbolic links pointing to directories.
Symlinks to files are always followed.

--set-version VERSION
Set application version. By default the application
version is read from default/app.conf. Placeholder
variables such as '{{git_tag}}' can be used here.

--set-build BUILD Set application build number.
--allow-local Allow the 'local' folder to be kept as-is WARNING:

This goes against Splunk packaging practices, and will
cause AppInspect to fail. However, this option can be
useful for private package transfers between servers,
app backups, or other admin-like tasks.

--block-local Block the 'local' folder and 'local.meta' from the
package.

--merge-local Merge any files in 'local' into the 'default' folder
during packaging. This is the default behavior.

Layer filtering:
If the app being packaged includes multiple layers, these arguments can be
used to control which ones should be included in the final app file. If no
layer options are specified, then all layers will be included.

--layer-method {auto,dir.d,disable}
Set the layer type used by SOURCE. Additional
description provided in in the 'combine' command.

-I PATTERN, --include PATTERN
(continues on next page)

3.11. Command line reference 65

KSConf Documentation, Release 0.8.1

(continued from previous page)

Name or pattern of layers to include.
-E PATTERN, --exclude PATTERN

Name or pattern of layers to exclude from the target.

Advanced Build Options:
The following options are for more advanced app building workflows.

--release-file RELEASE_FILE
Write the path of the newly generated archive file
(SPL) after the archive is written. This is useful in
build scripts when the SPL contains variables so the
final name may not be known ahead of time.

3.11.6 ksconf filter

usage: ksconf filter [-h] [-o FILE] [--comments] [--verbose]
[--match {regex,wildcard,string}] [--ignore-case]
[--invert-match] [--files-with-matches]
[--count | --brief] [--stanza PATTERN]
[--attr-present ATTR] [--keep-attrs WC-ATTR]
[--reject-attrs WC-ATTR]
CONF [CONF ...]

Filter the contents of a conf file in various ways. Stanzas can be included or
excluded based on a provided filter or based on the presence or value of a
key. Where possible, this command supports GREP-like arguments to bring a
familiar feel.

positional arguments:
CONF Input conf file

optional arguments:
-h, --help show this help message and exit
-o FILE, --output FILE

File where the filtered results are written. Defaults
to standard out.

--comments, -C Preserve comments. Comments are discarded by default.
--verbose Enable additional output.
--match {regex,wildcard,string}, -m {regex,wildcard,string}

Specify pattern matching mode. Defaults to 'wildcard'
allowing for '*' and '?' matching. Use 'regex' for
more power but watch out for shell escaping. Use
'string' to enable literal matching.

--ignore-case, -i Ignore case when comparing or matching strings. By
default matches are case-sensitive.

--invert-match, -v Invert match results. This can be used to show what
content does NOT match, or make a backup copy of
excluded content.

Output mode:
(continues on next page)

66 Chapter 3. User Guide

KSConf Documentation, Release 0.8.1

(continued from previous page)

Select an alternate output mode. If any of the following options are used,
the stanza output is not shown.

--files-with-matches, -l
List files that match the given search criteria

--count, -c Count matching stanzas
--brief, -b List name of matching stanzas

Stanza selection:
Include or exclude entire stanzas using these filter options. All filter
options can be provided multiple times. If you have a long list of
filters, they can be saved in a file and referenced using the special
'file://' prefix. One entry per line.

--stanza PATTERN Match any stanza who's name matches the given pattern.
PATTERN supports bulk patterns via the 'file://'
prefix.

--attr-present ATTR Match any stanza that includes the ATTR attribute.
ATTR supports bulk attribute patterns via the
'file://' prefix.

Attribute selection:
Include or exclude attributes passed through. By default, all attributes
are preserved. Allowlist (keep) operations are preformed before blocklist
(reject) operations.

--keep-attrs WC-ATTR Select which attribute(s) will be preserved. This
space separated list of attributes indicates what to
preserve. Supports wildcards.

--reject-attrs WC-ATTR
Select which attribute(s) will be discarded. This
space separated list of attributes indicates what to
discard. Supports wildcards.

3.11.7 ksconf promote

usage: ksconf promote [-h] [--batch | --interactive | --summary] [--verbose]
[--match {regex,wildcard,string}] [--ignore-case]
[--invert-match] [--stanza PATTERN] [--force] [--keep]
[--keep-empty]
SOURCE TARGET

Propagate .conf settings applied in one file to another. Typically this is used
to move 'local' changes (made via the UI) into another layer, such as the
'default' or a named 'default.d/50-xxxxx') folder.

Promote has two modes: batch and interactive. In batch mode, all changes are
applied automatically and the (now empty) source file is removed. In interactive
mode, the user is prompted to select stanzas to promote. This way local changes
can be held without being promoted.

(continues on next page)

3.11. Command line reference 67

KSConf Documentation, Release 0.8.1

(continued from previous page)

NOTE: Changes are *MOVED* not copied, unless '--keep' is used.

positional arguments:
SOURCE The source configuration file to pull changes from.

(Typically the 'local' conf file)
TARGET Configuration file or directory to push the changes

into. (Typically the 'default' folder)

optional arguments:
-h, --help show this help message and exit
--batch, -b Use batch mode where all configuration settings are

automatically promoted. All changes are removed from
source and applied to target. The source file will be
removed unless '--keep-empty' is used.

--interactive, -i Enable interactive mode where the user will be
prompted to approve the promotion of specific stanzas
and attributes. The user will be able to apply, skip,
or edit the changes being promoted.

--summary, -s Summarize content that could be promoted.
--verbose Enable additional output.
--force, -f Disable safety checks. Don't check to see if SOURCE

and TARGET share the same basename.
--keep, -k Keep conf settings in the source file. All changes

will be copied into the TARGET file instead of being
moved there. This is typically a bad idea since local
always overrides default.

--keep-empty Keep the source file, even if after the settings
promotions the file has no content. By default, SOURCE
will be removed after all content has been moved into
TARGET. Splunk will re-create any necessary local
files on the fly.

Automatic filtering options:
Include or exclude stanzas to promote using these filter options.
Stanzas selected by these filters will be promoted.

All filter options can be provided multiple times.
If you have a long list of filters, they can be saved in a file and
referenced using the special 'file://' prefix. One entry per line.

--match {regex,wildcard,string}, -m {regex,wildcard,string}
Specify pattern matching mode. Defaults to 'wildcard'
allowing for '*' and '?' matching. Use 'regex' for
more power but watch out for shell escaping. Use
'string' to enable literal matching.

--ignore-case Ignore case when comparing or matching strings. By
default matches are case-sensitive.

--invert-match, -v Invert match results. This can be used to prevent
content from being promoted.

--stanza PATTERN Promote any stanza with a name matching the given
pattern. PATTERN supports bulk patterns via the

(continues on next page)

68 Chapter 3. User Guide

KSConf Documentation, Release 0.8.1

(continued from previous page)

'file://' prefix.

3.11.8 ksconf merge

usage: ksconf merge [-h] [--target FILE] [--ignore-missing] [--dry-run]
[--banner BANNER]
FILE [FILE ...]

Merge two or more .conf files into a single combined .conf file. This is
similar to the way that Splunk logically combines the 'default' and 'local'
folders at runtime.

positional arguments:
FILE The source configuration file(s) to collect settings

from.

optional arguments:
-h, --help show this help message and exit
--target FILE, -t FILE

Save the merged configuration files to this target
file. If not provided, the merged conf is written to
standard output.

--ignore-missing, -s Silently ignore any missing CONF files.
--dry-run, -D Enable dry-run mode. Instead of writing to TARGET,

preview changes in 'diff' format. If TARGET doesn't
exist, then show the merged file.

--banner BANNER, -b BANNER
A banner or warning comment added to the top of the
TARGET file. Used to discourage Splunk admins from
editing an auto-generated file.

3.11.9 ksconf minimize

usage: ksconf minimize [-h] [--target TARGET] [--dry-run | --output OUTPUT]
[--explode-default] [-k PRESERVE_KEY]
CONF [CONF ...]

Minimize a conf file by removing any duplicated default settings. Reduce a
local conf file to only your intended changes without manually tracking which
entries you've edited. Minimizing local conf files makes your local
customizations easier to read and often results in cleaner upgrades.

positional arguments:
CONF The default configuration file(s) used to determine

what base settings are. The base settings determine
what is unnecessary to repeat in target file.

optional arguments:
(continues on next page)

3.11. Command line reference 69

KSConf Documentation, Release 0.8.1

(continued from previous page)

-h, --help show this help message and exit
--target TARGET, -t TARGET

The local file that you wish to remove duplicate
settings from. This file will be read from and then
replaced with a minimized version.

--dry-run, -D Enable dry-run mode. Instead of writing and minimizing
the TARGET file, preview what would be removed as a
'diff'.

--output OUTPUT Write the minimized output to a separate file instead
of updating TARGET.

--explode-default, -E
Enable minimization across stanzas for special use-
cases. Helpful when dealing with stanzas downloaded
from a REST endpoint or 'btool list' output.

-k PRESERVE_KEY, --preserve-key PRESERVE_KEY
Specify attributes that should always be kept.

3.11.10 ksconf snapshot

usage: ksconf snapshot [-h] [--output FILE] [--minimize] PATH [PATH ...]

Build a static snapshot of various configuration files stored within a
structured json export format. If the .conf files being captured are within a
standard Splunk directory structure, then certain metadata and namespace
information is assumed based on typical path locations. Individual apps or
conf files can be collected as well, but less metadata may be extracted.

positional arguments:
PATH Directory from which to load configuration files. All

.conf and .meta file are included recursively.

optional arguments:
-h, --help show this help message and exit
--output FILE, -o FILE

Save the snapshot to the named files. If not provided,
the snapshot is written to standard output.

--minimize Reduce the size of the JSON output by removing
whitespace. Reduces readability.

3.11.11 ksconf sort

usage: ksconf sort [-h] [--target FILE | --inplace] [-F] [-q] [-n LINES]
FILE [FILE ...]

Sort a Splunk .conf file. Sort has two modes: (1) by default, the sorted
config file will be echoed to the screen. (2) the config files are updated
in-place when the '-i' option is used.

(continues on next page)

70 Chapter 3. User Guide

KSConf Documentation, Release 0.8.1

(continued from previous page)

Manually managed conf files can be protected against changes by adding a comment␣
→˓containing the
string 'KSCONF-NO-SORT' to the top of any .conf file.

positional arguments:
FILE Input file to sort, or standard input.

optional arguments:
-h, --help show this help message and exit
--target FILE, -t FILE

File to write results to. Defaults to standard output.
--inplace, -i Replace the input file with a sorted version. WARNING:

This a potentially destructive operation that may
move/remove comments.

-n LINES, --newlines LINES
Number of lines between stanzas.

In-place update arguments:
-F, --force Force file sorting for all files, even for files

containing the special 'KSCONF-NO-SORT' marker.
-q, --quiet Reduce the output. Reports only updated or invalid

files. This is useful for pre-commit hooks, for
example.

3.11.12 ksconf rest-export

usage: ksconf rest-export [-h] [--output FILE] [--disable-auth-output]
[--pretty-print] [-u | -D] [--url URL] [--app APP]
[--user USER] [--owner OWNER] [--conf TYPE]
[--extra-args EXTRA_ARGS]
CONF [CONF ...]

Build an executable script of the stanzas in a configuration file that can be␣
→˓later applied to
a running Splunk instance via the Splunkd REST endpoint.

This can be helpful when pushing complex props and transforms to an instance where␣
→˓you only have
UI access and can't directly publish an app.

positional arguments:
CONF Configuration file(s) to export settings from.

optional arguments:
-h, --help show this help message and exit
--output FILE, -t FILE

Save the shell script output to this file. If not
provided, the output is written to standard output.

-u, --update Assume that the REST entities already exist. By
default, output assumes stanzas are being created.

(continues on next page)

3.11. Command line reference 71

KSConf Documentation, Release 0.8.1

(continued from previous page)

-D, --delete Remove existing REST entities. This is a destructive
operation. In this mode, stanza attributes are
unnecessary and ignored. NOTE: This works for 'local'
entities only; the default folder cannot be updated.

--url URL URL of Splunkd. Default: https://localhost:8089
--app APP Set the namespace (app name) for the endpoint
--user USER Deprecated. Use --owner instead.
--owner OWNER Set the object owner. Typically, the default of

'nobody' is ideal if you want to share the
configurations at the app-level.

--conf TYPE Explicitly set the configuration file type. By
default, this is derived from CONF, but sometimes it's
helpful to set this explicitly. Can be any valid
Splunk conf file type. Examples include: 'app',
'props', 'tags', 'savedsearches', etc.

--extra-args EXTRA_ARGS
Extra arguments to pass to all CURL commands. Quote
arguments on the command line to prevent confusion
between arguments to ksconf vs curl.

Output Control:
--disable-auth-output

Turn off sample login curl commands from the output.
--pretty-print, -p Enable pretty-printing. Make shell output a bit more

readable by splitting entries across lines.

3.11.13 ksconf rest-publish

usage: ksconf rest-publish [-h] [--conf TYPE] [-m META] [--url URL]
[--user USER] [--pass PASSWORD] [-k]
[--session-key SESSION_KEY] [--app APP]
[--owner OWNER] [--sharing {user,app,global}] [-D]
CONF [CONF ...]

Publish stanzas in a .conf file to a running Splunk instance via REST. This
requires access to the HTTPS endpoint of Splunk. By default, ksconf will
handle both the creation of new stanzas and the update of existing stanzas.
This can be used to push full configuration stanzas where you only have REST
access and can't directly publish an app. Only attributes present in the conf
file are pushed. While this may seem obvious, this fact can have profound
implications in certain situations, like when using this command for
continuous updates. This means that it's possible for the source .conf to
ultimately differ from what ends up on the server's .conf file. One way to
avoid this, is to explicitly remove an object using '--delete' mode first, and
then insert a new copy of the object. Of course, this means that the object
will be unavailable. The other impact is that diffs only compares and shows a
subset of attribute. Be aware, that for consistency, the configs/conf-TYPE
endpoint is used for this command. Therefore, a reload may be required for the
server to use the published config settings.

(continues on next page)

72 Chapter 3. User Guide

KSConf Documentation, Release 0.8.1

(continued from previous page)

positional arguments:
CONF Configuration file(s) to export settings from.

optional arguments:
-h, --help show this help message and exit
--conf TYPE Explicitly set the configuration file type. By

default, this is derived from CONF, but sometimes it's
helpful to set this explicitly. Can be any valid
Splunk conf file type. Examples include: 'app',
'props', 'tags', 'savedsearches', etc.

-m META, --meta META Specify one or more '.meta' files to determine the
desired read & write ACLs, owner, and sharing for
objects in the CONF file.

--url URL URL of Splunkd. Default: https://localhost:8089
--user USER Login username Splunkd. Default: admin
--pass PASSWORD Login password Splunkd. Default: changeme
-k, --insecure Disable SSL cert validation.
--session-key SESSION_KEY

Use an existing session token instead of using a
username and password to login.

--app APP Set the namespace (app name) for the endpoint
--owner OWNER Set the user who owns the content. The default of

'nobody' works well for app-level sharing.
--sharing {user,app,global}

Set the sharing mode.
-D, --delete Remove existing REST entities. This is a destructive

operation. In this mode, stanza attributes are
unnecessary. NOTE: This works for 'local' entities
only; the default folder cannot be updated.

3.11.14 ksconf unarchive

usage: ksconf unarchive [-h] [--dest DIR] [--app-name NAME]
[--default-dir DIR] [--exclude EXCLUDE] [--keep KEEP]
[--allow-local]
[--git-sanity-check {off,changed,untracked,ignored}]
[--git-mode {nochange,stage,commit}] [--no-edit]
[--git-commit-args GIT_COMMIT_ARGS]
SPL

Install or overwrite an existing app in a git-friendly way.
If the app already exists, steps will be taken to upgrade it safely.

The 'default' folder can be redirected to another path (i.e., 'default.d/10-
→˓upstream' or
other desirable path if you're using the 'ksconf combine' tool to manage extra␣
→˓layers).

positional arguments:
SPL The path to the archive to install.

(continues on next page)

3.11. Command line reference 73

KSConf Documentation, Release 0.8.1

(continued from previous page)

optional arguments:
-h, --help show this help message and exit
--dest DIR Set the destination path where the archive will be

extracted. By default, the current directory is used.
Sane values include: etc/apps, etc/deployment-apps,
and so on.

--app-name NAME The app name to use when expanding the archive. By
default, the app name is taken from the archive as the
top-level path included in the archive (by
convention).

--default-dir DIR Name of the directory where the default contents will
be stored. This is a useful feature for apps that use
a dynamic default directory that's created and managed
by the 'combine' mode.

--exclude EXCLUDE, -e EXCLUDE
Add a file pattern to exclude from extraction.
Splunk's pseudo-glob patterns are supported here. '*'
for any non-directory match, '...' for ANY (including
directories), and '?' for a single character.

--keep KEEP, -k KEEP Specify a pattern for files to preserve during an
upgrade. Repeat this argument to keep multiple
patterns.

--allow-local Allow local/* and local.meta files to be extracted
from the archive.

--git-sanity-check {off,changed,untracked,ignored}
By default, 'git status' is run on the destination
folder to detect working tree or index modifications
before the unarchive process start. Sanity check
choices go from least restrictive to most thorough:
'off' prevents all safety checks. 'changed' aborts
only upon local modifications to files tracked by git.
'untracked' (the default) looks for changed and
untracked files. 'ignored' aborts is (any) local
changes, untracked, or ignored files are found.

--git-mode {nochange,stage,commit}
Set the desired level of git integration. The default
mode is *stage*, where new, updated, or removed files
are automatically handled for you. To prevent any 'git
add' or 'git rm' commands from being run, pick the
'nochange' mode.

--no-edit Tell git to skip opening your editor on commit. By
default, you will be prompted to review/edit the
commit message. (Git Tip: Delete the content of the
default message to abort the commit.)

--git-commit-args GIT_COMMIT_ARGS, -G GIT_COMMIT_ARGS
Extra arguments to pass to 'git'

74 Chapter 3. User Guide

KSConf Documentation, Release 0.8.1

3.11.15 ksconf xml-format

usage: ksconf xml-format [-h] [--indent INDENT] [--quiet] FILE [FILE ...]

Normalize and apply consistent XML indentation and CDATA usage for XML
dashboards and navigation files. Technically this could be used on *any* XML
file, but certain element names specific to Splunk's simple XML dashboards are
handled specially, and therefore could result in unusable results. The
expected indentation level is guessed based on the first element indentation,
but can be explicitly set if not detectable.

positional arguments:
FILE One or more XML files to check. If '-' is given, then a

list of files is read from standard input

optional arguments:
-h, --help show this help message and exit
--indent INDENT Number of spaces. This is only used if indentation cannot

be guessed from the existing file.
--quiet, -q Reduce the volume of output.

3.12 Changelog

Note: Changes in master, but not released yet are marked as DRAFT.

3.12.1 Ksconf 0.8

Highlights:

• New command ksconf package is designed for both Splunk developers and admins

• New module ksconf.builder helps build Splunk apps using a pipeline; or when external
Python libraries are bundled into an app

• Legit layer support with built-in layer filtering capabilities is available in several commands

• Python 3! Head’s up: We’ll be dropping support for Python 2 in an upcoming release

Note: Come chat about ksconf on GitHub discussions even if it’s to say we should use some other
forum to stay in touch.

What’s new:

• The new ksconf package command supports the creation of Splunk app .spl files from a
source directory. The package command can be used by admins to transfer apps around an
organization, while keeping the local folder intact, or by a developer who wants local to be

3.12. Changelog 75

https://github.com/Kintyre/ksconf/discussions

KSConf Documentation, Release 0.8.1

automatically merged into default. The app version can be set based on the latest git tag by
simply saying --set-version={{git_tag}}.

• The ksconf.builder Python module is a API-only first for ksconf! This build library allow
caching of expensive deterministic build operations, and has out-of-the-box support for fre-
quent build steps like adding Python modules locally using pip. As the first feature with no
CLI support, I’m exceeded to get input from the broader community on this approach. Of
course this is just an experimental first release. As always, feedback welcome!

• Native support for layers! It’s official, layers are now a proper ksconf feature, not just
an abstract concept that you could throw together yourself given enough time and effort.
This does mean that ksconf has to be more opinionated, but the design supports switching
layer methods, which can be extended over time to support new different strategies as they
emerge and are embraced by the community. Supports layers filtering as a native feature.
This has always been technically possible, but awkward to implement yourself. Layer support
is currently available in ksconf combine and ksconf package commands.

• Moving to Python 3 soon. In preparation for the move to Python 3, I’ve added additional
backport libraries to be installed when running Python 2. Support for Python 2 will be
dropped in a future release, and anyone still on Splunk 7 who can’t get a Python 3 envi-
ronment will have to use an older version of ksconf. Also note that when jumping to Python
3, we will likely be requiring Python 3.6 or newer right out of the gate. (This means dropping
Python 2.7, 3.4 and 3.5 all at the same time.) Whoohoo for f-strings!

• CLI option abbreviation has been disabled. This could be a breaking change for existing
scripts. Hopefully no one was relying on this already, but in order to prevent long-term CLI
consistency issues as new CLI arguments are added, this feature has been disabled for all
version of Python. This feature is only available, and was enabled by default, starting in
Python 3.5.

• Removed insensitive language. Specifically the terms ‘whitelist’ and ‘blacklist’ have been
replaced, where possible. Fortunately, these terms were not used in any CLI arguments, so
there should be no user-facing changes as a result of this.

• Removed support for building a standalone executable (zipapp). This packaging option
was added in v0.4.3, and deprecated in v0.6.0 once the Splunk app install option became
available. I’m pretty sure this won’t be missed.

API Changes

• NEW API ksconf.builder The documentation for this module needs work, and the whole API
should be considered quite experimental. The easiest way to get started is to look at the Build
Example.

• NEW Context manager update_conf. This enables super easy conf editing in Python with just
a few lines of code. See docs API docs for a usage example.

Developer changes:

• Formatting via autopep8 and isort (enforced by pre-commit)

• Better flake8 integration for bulk checking (run via: tox -e flake8,flake8-unittest)

76 Chapter 3. User Guide

KSConf Documentation, Release 0.8.1

Ksconf v0.8.1 (2021-03-20)

• Fixed some build issues with the Splunk app. (The splunk app is now built with ksconf
package and the ksconf.builder)

• Minor doc fix up; you know, the stuff typically found minutes after any new release :-)

Ksconf v0.8.0 (2021-03-19)

In addition to the 0.8 summary above, 0.8.0 specifically includes the following changes:

• Add automatic layer support. Currently the two supported layer schemes are (1) explicit
layers (really this will disable automatic layer detection), and (2) the dir.d format which
uses the default.d/##-layer-name style directory support, which we previously promoted in
the docs, but never really fully supported in a native way. This new dir.d directory layout
support also allows for multiple *.d folders in a single tree (so not just default.d), and if
your apps have different layer-points in different apps, it’s all handled transparently.

• Layer selection support was added to the combine command. This allows you to --include
and --exclude layers as you see fit. See the docs for more details and examples of this new
functionality. This works for both the new dir.d directories and the explicit layers, though
moving to the dir.d format is highly encouraged.

• New cheatsheet example: Using ksconf package and splunk install app together.

• Updated the combine behavior to optimize for the situation where there is only a single conf
input file provided. This behavior leaves any .conf or .meta file untouched so there’s no
sorting/normalizing or banner. See #64.

• Eliminated an “unknown command” error when one of the ksconf python modules has a
SyntaxError. The new behavior isn’t perfect (you may still see “unrecognized arguments”),
but overall it’s still a step in the right direction.

3.12.2 Ksconf 0.7.x

New functionality, massive documentation improvements, metadata support, and Splunk app in-
stall fixes.

Release v0.7.10 (2021-03-19)

• Fixed bug where empty stanzas in the local file could result in deletion in default with ksconf
promote. Updated diff interface to improve handling of empty stanzas, but wider support is
still needed across other commands; but this isn’t a high priority.

Release v0.7.9 (2020-09-23)

• Fixed bug where empty stanzas could be removed from .conf files. This can be detrimental
for capability::* entries in authorize.conf, for example. A big thanks to nebffa for tracking

3.12. Changelog 77

https://github.com/Kintyre/ksconf/issues/64

KSConf Documentation, Release 0.8.1

down this bug!

Release v0.7.8 (2020-06-19)

• New automatic promote mode is now available using CLI arguments! This allows stanzas to
be selected for promotion from the CLI in batch and interactive modes. This implementation
borrows (and shares code) with the ksconf filter command so hopefully the CLI arguments
look familiar. It’s possible to promote a single stanza, a stanza wildcard, regex or invert the
matching logic and promote everything except for the named stanza (blocklist). Right now
--stanza is the only supporting matching mode, but more can be added as needed. A huge
thanks to mthambipillai for providing a pull-request with an initial implementation of this
feature!

• Added a new summary output mode (ksconf promote --summary) that will provide a quick
summary of what content could be promoted. This can be used along side the new --stanza
filtering options to show the names of stanzas that can be promoted.

• Replaced insensitive terminology with race-neutral terms. Specifically the terms ‘blacklist’
and ‘whitelist’ have been replaced. NOTE: This does not change any CLI attributes, but in
a few cases the standard output terminology is slightly different. Also terminology in .conf
files couldn’t be updated as that’s controlled by Splunk.

• Fixed bug in the unarchive command where a locale folder was blocked as a local folder
and where a nested default folder (nested under a Python package, for example) could get
renamed if --default-dir was used, now only the top-most default folder is updated. Also
fixed an unlikely bug triggered when default/app.conf is missing.

• Fixed bug with minimize when the required --target argument is not given. This now results
in a reminder to the user rather than an unhandled exception.

• Splunk app packaging fix. Write access to the app was previously not granted due to a spelling
mistake in the metadata file.

Release v0.7.7 (2020-03-05)

• Added new --follow-symlink option to the combine command so that input directory struc-
tures with symbolic links can be treated the same as proper directories.

• Corrected Windows issue where wildcard (glob) patterns weren’t expanded by for check and
sort. This is primarily a difference in how a proper shells (e.g., bash, csh, zsh) handle ex-
pansion natively vs CMD on Windows does not. However, since this is typically transparently
handled by many CLI tools, we’ll follow suite. (BTW, running ksconf from the GIT Bash
prompt is a great alternative.) Only the most minimalistic expansion rules will be available,
(so don’t expect {props,transforms,app}.conf to work anytime soon), but this should be
good enough for most use cases. Thanks to SID800 for reporting this bug.

• Fixed issues with the unarchive command when git is not installed or an app is being unar-
chived (installed/upgrade) into a location not managed by Git. Note that additional output
is now enabled when the KSCONF_DEBUG environmental variable is set (in lieu of a proper
verbose mode). Bug report provided by SID800.

78 Chapter 3. User Guide

KSConf Documentation, Release 0.8.1

• Enhanced ksconf --version output to include Git executable path and version information;
as well as a platform dump. (Helpful for future bug reporting.)

• Added feature to disable the marker file (safety check) automatically created by the combine
command for use in automated processing workflows.

• Updated pre-commit documentation and sample configurations to use rev rather than sha as
the means of identifying upstream tags or revisions. Recent releases of pre-commit will warn
you about this during each run.

• Fixed a temporary file cleanup issue during certain in-place file replacement operations. (If
you found any unexpected *.tmp files, this could have been the cause.)

Release v0.7.6 (2019-08-15)

• Fresh review and cleanup of all docs! (A huge thank you to Brittany Barnett for this massive
undertaking)

• Fixed unhandled exception when encountering a global stanza in metadata files.

• Expand some error messages, sanity checks, and added a new session token (--session-key)
authentication option for rest-publish.

Release v0.7.5 (2019-07-03)

• Fixed a long-term bug where the diff output of a single-line attribute change was incorrectly
represented in the textual output of ‘ksconf diff’ and the diff output in other commands. This
resolves a combination of bugs, the first half of which was fixed in 0.7.3.

• Allow make_docs script to run on Windows, and other internal doc build process improve-
ments.

Release v0.7.4 (2019-06-07)

• Inline the six module to avoid elusive bootstrapping cases where the module couldn’t be
found. This primarily impacts pre-commit users. The ksconf.ext.* prefix is being used for
this, and any other inlined third party modules we may need in the future.

• Other minor docs fixes and internal non-visible changes.

Release v0.7.3 (2019-06-05)

• Added the new ksconf xml-format command.

– The ksconf xml-format command brings format consistency to your XML representa-
tions of Simple XML dashboards and navigation files by fixing indentation automatically
adding <![CDATA[...]]> blocks, as needed, to reduce the need for XML escaping,
resulting in more readable source.

3.12. Changelog 79

KSConf Documentation, Release 0.8.1

– Additionally, a new pre-commit hook named ksconf-xml-format was added to leverage
this new functionality. It looks specifically for xml views and navigation files based on
path. This may also include Advanced XML, which hasn’t been tested; So if you use
Advanced XML, proceed with caution.

– Note that this adds lxml as a packaging dependency which is needed for pre-commit
hooks, but not strictly required at run time for other ksconf commands. This is NOT
ideal, and may change in the future in attempts to keep ksconf as light-weight and
standalone as possible. One possible alternative is setting up a different repo for pre-
commit hooks. Python packaging and distribution tips welcome.

• Fixed data loss bug in promote (interactive mode only) and improved some UI text and
prompts.

• Fixed colorization of ksconf diff output where certain lines failed to show up in the correct
color.

• Fixed bug where debug tracebacks didn’t work correctly on Python 2.7. (Enable using
KSCONF_DEBUG=1.)

• Extended the output of ksconf --version to show the names and version of external modules,
when present.

• Improved some resource allocation in corner cases.

• Tested with Splunk 7.3 (numeric similarity in version numbers is purely coincidental)

Attention: API BREAKAGE

The DiffOp output values for DIFF_OP_INSERT and DIFF_OP_DELETE have been changed in a
backwards-compatible breaking way. The values of a and b were previously reversed for these
two operations, leading to some code confusion.

Release v0.7.2 (2019-03-22)

• Fixed bug where filter would crash when doing stanza matching if global entries were
present. Global stanzas can be matched by searching for a stanza named default.

• Fixed broken pre-commit issue that occurred for the v0.7.1 tag. This also kept setup.py from
working if the six module wasn’t already installed. Developers and pre-commit users were
impacted.

Release v0.7.1 (2019-03-13)

• Additional fixes for UTF-8 BOM files which appear to happen more frequently with local
files on Windows. This time some additional unit tests were added so hopefully there are few
regressions in the future.

80 Chapter 3. User Guide

KSConf Documentation, Release 0.8.1

• Add the ignore-missing argument to ksconf merge to prevent errors when input files are ab-
sent. This allows bashisms Some_App/{{default,local}}/savedsearches.conf to work with-
out errors if the local or default file is missing.

• Check for incorrect environment setup and suggest running sourcing setSplunkEnv to get a
working environment. See #48 for more info.

• Minor improvements to some internal error handling, packaging, docs, and troubleshooting
code.

Release v0.7.0 (2019-02-27)

Attention: For anyone who installed 0.6.x, we recommend a fresh install of the Splunk app
due to packaging changes. This shouldn’t be an issue in the future.

General changes:

• Added new ksconf rest-publish command that supersedes the use of rest-export for nearly
every use case. Warning: No unit-testing has been created for this command yet, due to
technical hurdles.

• Added Cheat Sheet to the docs.

• Massive doc cleanup of hundreds of typos and many expanded/clarified sections.

• Significant improvement to entrypoint handling and support for conditional inclusion of 3rd
party libraries with sane behavior on import errors, and improved warnings. This information
is conveniently viewable to the user via ksconf --version.

• Refactored internal diff logic and added additional safeties and unit tests. This includes
improvements to TTY colorization which should avoid previous color leaks scenarios that
were likely if unhandled exceptions occur.

• New support for metadata handling.

• CLI change for rest-export: The --user argument has been replaced with --owner to keep
clean separation between the login account and object owners. (The old argument is still
accept for now.)

Splunk app changes:

• Modified installation of python package installation. In previous releases, various .dist-info
folders were created with version-specific names leading to a mismatch of package versions
after upgrade. For this reason, we suggest that anyone who previously installed 0.6.x should
do a fresh install.

• Changed Splunk app install script to install.py (it was bootstrap_bin.py). Hopefully this
is more intuitive.

• Added Windows support to install.py.

3.12. Changelog 81

https://github.com/Kintyre/ksconf/issues/48

KSConf Documentation, Release 0.8.1

• Now includes the Splunk Python SDK. Currently used for rest-publish but will eventually
be used for additional functionally unique to the Splunk app.

3.12.3 Ksconf 0.6.x

Add deployment as a Splunk app for simplicity and significant docs cleanup.

Release v0.6.2 (2019-02-09)

• Massive rewrite and restructuring of the docs. Highlights include:

– Reference material has been moved out of the user manual into a different top-level
section.

– Many new topics were added, such as

* Ksconf as external difftool

* How Splunk writes to conf files

* Configuration layers

* What’s so important about minimizing files?

– A new approach for CLI documentation. We’re moving away from the WALL OF TEXT
thing. (Yeah, it was really just the output from --help). That was limiting formatting,
linking, and making the CLI output way too long.

• Refreshed Splunk app icons. Add missing alt icon.

• Several minor internal cleanups. Specifically the output of --version had a face lift.

Release v0.6.1 (2019-02-07)

• (Trivial) Fixed some small issues with the Splunk App (online AppInspect)

Release v0.6.0 (2019-02-06)

• Add initial support for building ksconf into a Splunk app.

– App contains a local copy of the docs, helpful for anyone who’s working offline.

– Credit to Sarah Larson for the ksconf logos.

– No ksconf functionality exposed to the Splunk UI at the moment.

• Docs/Sphinx improvements (more coming)

– Begin work on cleaning up API docs.

– Started converting various document pages into reStructuredText for greatly improved
docs.

82 Chapter 3. User Guide

KSConf Documentation, Release 0.8.1

– Improved PDF fonts and fixed a bunch of sphinx errors/warnings.

• Refactored the install docs into 2 parts. With the new ability to install ksconf as a Splunk app
it’s quite likely that most of the wonky corner cases will be less frequently needed, hence all
the more exotic content was moved into the “Advanced Install Guide”, tidying things up.

3.12.4 Ksconf 0.5.x

Add Python 3 support, new commands, support for external command plugins, tox and vagrant for
testing.

Release v0.5.6 (2019-02-04)

• Fixes and improvements to the filter command. Found issue with processing from stdin,
inconsistency in some CLI arguments, and finished implementation for various output modes.

• Add logo (fist attempt).

Release v0.5.5 (2019-01-28)

• New ksconf filter command added for slicing up a conf file into smaller pieces. Think of this
as GREP that’s stanza-aware. Can also allow or block attributes, if desirable.

• Expanded rest-export CLI capabilities to include a new --delete option, pretty-printing,
and now supports stdin by allowing the user to explicitly set the file type using --conf.

• Refactored all CLI unittests for increased readability and long-term maintenance. Unit tests
now can also be run individually as scripts from the command line.

• Minor tweaks to the snapshot output format, v0.2. This feature is still highly experimental.

Release v0.5.4 (2019-01-04)

• New commands added:

– ksconf snapshot will dump a set of configuration files to a JSON formatted file. This can
be used used for incremental “snapshotting” of running Splunk apps to track changes
overtime.

– ksconf rest-export builds a series of custom curl commands that can be used to publish
or update stanzas on a remote instance without file system access. This can be helpful
when pushing configs to Splunk Cloud when all you have is REST (splunkd) access. This
command is indented for interactive admin not batch operations.

• Added the concept of command maturity. A listing is available by running ksconf --version

• Fix typo in KSCONF_DEBUG.

• Resolving some build issues.

3.12. Changelog 83

KSConf Documentation, Release 0.8.1

• Improved support for development/testing environments using Vagrant (fixes) and Docker
(new). Thanks to Lars Jonsson for these enhancements.

Release v0.5.3 (2018-11-02)

• Fixed bug where ksconf combine could incorrectly order directories on certain file systems
(like ext4), effectively ignoring priorities. Repeated runs may resulted in undefined behavior.
Solved by explicitly sorting input paths forcing processing to be done in lexicographical order.

• Fixed more issues with handling files with BOM encodings. BOMs and encodings in general
are NOT preserved by ksconf. If this is an issue for you, please add an enhancement issue.

• Add Python 3.7 support

• Expand install docs specifically for offline mode and some OS-specific notes.

• Enable additional tracebacks for CLI debugging by setting KSCONF_DEBUG=1 in the environ-
ment.

Release v0.5.2 (2018-08-13)

• Expand CLI output for --help and --version

• Internal cleanup of CLI entry point module name. Now the ksconf CLI can be invoked as
python -m ksconf, you know, for anyone who’s into that sort of thing.

• Minor docs and CI/testing improvements.

Release v0.5.1 (2018-06-28)

• Support external ksconf command plugins through custom entry_points, allowing for others
to develop their own custom extensions as needed.

• Many internal changes: Refactoring of all CLI commands to use new entry_points as well as
pave the way for future CLI unittest improvements.

• Docs cleanup / improvements.

Release v0.5.0 (2018-06-26)

• Python 3 support.

• Many bug fixes and improvements resulting from wider testing.

3.12.5 Ksconf 0.4.x

Ksconf 0.4.x switched to a modular code base, added build/release automation, PyPI package reg-
istration (installation via pip install and, online docs.

84 Chapter 3. User Guide

KSConf Documentation, Release 0.8.1

Release v0.4.10 (2018-06-26)

• Improve file handling to avoid “unclosed file” warnings. Impacted parse_conf(),
write_conf(), and many unittest helpers.

• Update badges to report on the master branch only. (No need to highlight failures on feature
or bug-fix branches.)

Release v0.4.9 (2018-06-05)

• Add some missing docs files

Release v0.4.8 (2018-06-05)

• Massive cleanup of docs: revamped install guide, added ‘standalone’ install procedure and
developer-focused docs. Updated license handling.

• Updated docs configuration to dynamically pull in the ksconf version number.

• Using the classic ‘read-the-docs’ Sphinx theme.

• Added additional PyPi badges to README (GitHub home page).

Release v0.4.4-v0.4.1 (2018-06-04)

• Deployment and install fixes (It’s difficult to troubleshoot/test without making a new release!)

Release v0.4.3 (2018-06-04)

• Rename PyPI package kintyre-splunk-conf

• Add support for building a standalone executable (zipapp).

• Revamp install docs and location

• Add GitHub release for the standalone executable.

Release v0.4.2 (2018-06-04)

• Add readthedocs.io support

Release v0.4.1 (2018-06-04)

• Enable PyPI production package building

3.12. Changelog 85

KSConf Documentation, Release 0.8.1

Release v0.4.0 (2018-05-19)

• Refactor entire code base. Switched from monolithic all-in-one file to clean-cut modules.

• Versioning is now discoverable via ksconf --version, and controlled via git tags (via git
describe --tags).

Module layout

• ksconf.conf.* - Configuration file parsing, writing, comparing, and so on

• ksconf.util.* - Various helper functions

• ksconf.archive - Support for decompressing Splunk apps (tgz/zip files)

• ksconf.vc.git - Version control support. Git is the only VC tool supported for now. (Possibly
ever)

• ksconf.commands.<CMD> - Modules for specific CLI functions. I may make this extendable,
eventually.

3.12.6 Ksconf 0.3.x

First public releases.

Release v0.3.2 (2018-04-24)

• Add AppVeyor for Windows platform testing

• Add codecov integration

• Created ConfFileProxy.dump()

Release v0.3.1 (2018-04-21)

• Setup automation via Travis CI

• Add code coverage

Release v0.3.0 (2018-04-21)

• Switched to semantic versioning.

• 0.3.0 feels representative of the code maturity.

86 Chapter 3. User Guide

KSConf Documentation, Release 0.8.1

3.12.7 Ksconf legacy releases

Ksconf started in a private Kintyre repo. There are no official releases; all git history has been
rewritten.

Release legacy-v1.0.1 (2018-04-20)

• Fixes to blocklist support and many enhancements to ksconf unarchive.

• Introduces parsing profiles.

• Lots of bug fixes to various subcommands.

• Added automatic detection of ‘subcommands’ for CLI documentation helper script.

Release legacy-v1.0.0 (2018-04-16)

• This is the first public release. First work began Nov 2017 (as a simple conf ‘sort’ tool, which
was imported from yet another repo.) Version history was extracted/rewritten/preserved as
much as possible.

• Mostly stable features.

• Unit test coverage over 85%

• Includes pre-commit hook configuration (so that other repos can use this to run ksconf sort
and ksconf check against their conf files.

3.13 Known issues

3.13.1 General

• File encoding issues: Byte order markers and specific encodings are NOT preserved. All files
are encoding using UTF-8 upon update, which is Splunk’s expected encoding.

3.13.2 Splunk app

• File cleanup issues after KSCONF app for Splunk upgrades (impacts versions prior to 0.7.0).
Old .dist-info folders or other stale files may be left around after upgrades. If you encounter
this issue, either uninstall and delete the ksconf directory or manually remove the old ‘bin’
folder and (re)upgrade to the latest version. The fix in 0.7.0 is to remove the version-specific
portion of the folder name. (GH issue #37)

See more confirmed bugs in the issue tracker.

3.13. Known issues 87

https://github.com/Kintyre/ksconf/labels/bug

KSConf Documentation, Release 0.8.1

3.14 Advanced Installation Guide

The content in this document is a subsidiary to the Installation Guide because it became disorga-
nized and the number of possible Python installation combinations and snags intensified. However,
that culminated in the collection of excellent information that is provided here. Please remember,
the Splunk app install approach was introduced to alleviate several of these issues.

A portion of this document is targeted at those who can’t install packages as Admin or are forced
to use Splunk’s embedded Python. For everyone else, please start with the one-liner!

Tip: Do any of these words for phrases strike fear in your heart?

• pip
• pipenv
• virtualenv
• wheel
• pyenv (not the same as pyvenv)
• python2.7 vs python27 vs py -27
• PYTHONPATH
• LD_LIBARY
• RedHat Software Collections

If this list seems daunting, head over to Install Splunk App. There’s no shame in it.

Contents

• Advanced Installation Guide

– Flowchart

– Installation

* Install from PyPI with PIP

· Install ksconf into a virtual environment

· Install ksconf system-wide

* CentOS (RedHat derived) distros

· RedHat Software Collections

* Install the Wheel manually (offline mode)

* Install with Splunk’s Python

· On Linux or Mac

· On Windows

– Offline installation

* Offline installation steps

88 Chapter 3. User Guide

KSConf Documentation, Release 0.8.1

* Offline installation of pip

· Use pip without installing it

– Frequent gotchas

* PIP Install TLS Error

* No module named ‘command.install’

– Troubleshooting

* Check Python version

* Check PIP Version

* Validate the install

– Resources

3.14.1 Flowchart

(Unfinished; more of a brainstorm at this point. . .)

• Is Python installed? (OS level)

– Is the version greater than 2.7? (Some early 2.7 version have quarks, but typically this
is okay)

– If Python 3.x, is it greater than 3.4? (I’d like to drop 3.4, but lots of old distros still have
it.)

• Do you have admin access? (root/Administrator; or can you get it? How hard? Will you need
it each time you upgrade the ksconf?)

• Do you already have a large Python deployment or dependency? (If so, you’ll probably be
fine. Use virtualenv)

• Do you have any prior Python packaging or administration experience?

• Are you dealing with some vendor-specific solution?

– Example: RedHat Software Collections – where they realize their software is way too
old, so they try to make it possible to install newer version of things like Python, but
since they aren’t native or the default, you still end up jumping through a bunch of
wonky hoops)

• Do you have Internet connectivity? (air gap or blocked outbound traffic, or proxy)

• Do you want to build/deploy your own ksconf extensions? If so, the Python package is a
better option. (But at that point, you can probably already handle any packaging issues
yourself.)

3.14. Advanced Installation Guide 89

https://virtualenv.pypa.io/en/stable/

KSConf Documentation, Release 0.8.1

3.14.2 Installation

There are several ways to install ksconf. Technically, all standard Python packaging approaches
should work just fine as there’s no compiled code or external run-time dependencies so installation
is fairly easy. However, for non-Python developers, there are some snags. Installation options are
listed from the most easy and recommended, to more obscure and difficult:

Install from PyPI with PIP

The preferred installation method is to install via the standard Python package tool pip. Ksconf can
be installed via the registered kintyre-splunk-conf package using the standard Python process.

There are 2 popular variations, depending on whether or not you would like to install for all users
or test it locally.

Install ksconf into a virtual environment

Use this option if you don’t have admin access

Installing ksconf with virtualenv is a great way to test the tool without requiring admin privileges
and has many advantages for a production install. Here are the basic steps to get started.

Please change venv to a suitable path for your environment.

Install Python virtualenv package (if not already installed)
pip install virtualenv

Create and activte new 'venv' virtual environment
virtualenv venv
source venv/bin/activate

pip install kintyre-splunk-conf

Note: Windows users

The above virtual environment activation should be run as venv\Scripts\activate.bat.

Install ksconf system-wide

Important: This requires admin access.

This is the absolute easiest install method where ‘ksconf’ is available to all users on the system but
it requires root access and pip must be installed and up-to-date.

On Mac or Linux, run:

90 Chapter 3. User Guide

https://pypi.org/project/kintyre-splunk-conf
https://virtualenv.pypa.io/en/stable/

KSConf Documentation, Release 0.8.1

sudo pip install kintyre-splunk-conf

On Windows, run this command from an Administrator console.

pip install kintyre-splunk-conf

CentOS (RedHat derived) distros

Enable the EPEL repo so that `pip` can be installed.
sudo yum install -y epel-release

Install pip
sudo yum install -y python-pip

Install ksconf (globally, for all users)
sudo pip install kintyre-splunk-conf

RedHat Software Collections

The following assumes the python27 software collection, but other version of Python are supported
too. The initial setup and deployment of Software Collections is beyond the scope of this doc.

sudo scl enable python27 python -m pip install kintyre-splunk-conf

Hint: Missing pip?

If pip is missing from a RHSC, then install the following rpm.

yum install python27-python-pip

Unfortunately, the ksconf entrypoint script (in the bin folder) will not work correctly on it’s own
because it doesn’t know about the scl environment, nor is it in the default PATH. To solve this, run
the following:

sudo cat > /usr/local/bin/ksconf <<HERE
#!/bin/sh
source scl_source enable python27
exec /opt/rh/python27/root/usr/bin/ksconf "$@"
HERE
chmod +x /usr/local/bin/ksconf

Install the Wheel manually (offline mode)

Download the latest “Wheel” file file from PyPI, copy it to the destination server and install with
pip.

3.14. Advanced Installation Guide 91

KSConf Documentation, Release 0.8.1

Offline pip install:

pip install ~/Downloads/kintyre-splunk-conf-0.4.2-py2.py3-none-any.whl

Install with Splunk’s Python

Deprecated since version 0.6.0: Don’t do this anymore. Please use the KSCONF App for Splunk
instead.

Splunk Enterprise 6.x and later installs an embedded Python 2.7 environment. However, Splunk
does not provide packing tools (such as pip or the distutils standard library which is required
to bootstrap install pip). For these reasons, it’s typically easier and cleaner to install ksconf with
the system provided Python. However, sometimes the system-provided Python environment is the
wrong version, is missing (like on Windows), or security restrictions prevent the installation of
additional packages. In such cases, Splunk’s embedded Python becomes a beacon of hope.

On Linux or Mac

Download the latest “Wheel” file file from PyPI. The path to this download will be set in the pkg
variable as shown below.

Setup the shell:

export SPLUNK_HOME=/opt/splunk
export pkg=~/Downloads/kintyre_splunk_conf-0.4.9-py2.py3-none-any.whl

Run the following:

cd $SPLUNK_HOME
mkdir Kintyre
cd Kintyre
Unzip the 'kconf' folder into SPLUNK_HOME/Kintyre
unzip "$pkg"

cat > $SPLUNK_HOME/bin/ksconf <<HERE
#!/bin/sh
export PYTHONPATH=$PYTHONPATH:$SPLUNK_HOME/Kintyre
exec $SPLUNK_HOME/bin/python -m ksconf \$*
HERE
chmod +x $SPLUNK_HOME/bin/ksconf

Test the install:

ksconf --version

OnWindows

1. Open a browser and download the latest “Wheel” file file from PyPI.

92 Chapter 3. User Guide

https://splunkbase.splunk.com/app/4383/

KSConf Documentation, Release 0.8.1

2. Rename the .whl extension to .zip. (This may require showing file extensions in Explorer.)

3. Extract the zip file to a temporary folder. (This should create a folder named “ksconf”)

4. Create a new folder called “Kintyre” under the Splunk installation path (aka SPLUNK_HOME) By
default, this is C:\Program Files\Splunk.

5. Copy the “ksconf” folder to %SPLUNK_HOME%\Kintyre.

6. Create a new batch file called ksconf.bat and paste in the following. Be sure to adjust for a
non-standard %SPLUNK_HOME% value, if necessary.

@echo off
SET SPLUNK_HOME=C:\Program Files\Splunk
SET PYTHONPATH=%SPLUNK_HOME%\bin;%SPLUNK_HOME%\Python-2.7\Lib\site-packages\win32;
→˓%SPLUNK_HOME%\Python-2.7\Lib\site-packages;%SPLUNK_HOME%\Python-2.7\Lib
SET PYTHONPATH=%PYTHONPATH%;%SPLUNK_HOME%\Kintyre
CALL "%SPLUNK_HOME%\bin\python.exe" -m ksconf %*

7. Move ksconf.bat to the Splunk\bin folder. (This assumes that %SPLUNK_HOME%/bin is part of
your %PATH%. If not, add it, or find an appropriate install location.)

8. Test this by running ksconf --version from the command line.

3.14.3 Offline installation

Installing ksconf to an offline or network restricted computer requires three steps: (1) download the
latest packages from the Internet to a staging location, (2) transfer the staged content (often as a
zip file) to the restricted host, and (3) use pip to install packages from the staged copy. Fortunately,
pip makes offline workflows quite easy to achieve. Pip can download a Python package with all
dependencies stored as wheels files into a single directory, and pip can be told to install from that
directory instead of attempting to talk to the Internet.

The process of transferring these files is very organization-specific. The example below shows
the creation of a tarball (since tar is universally available on Unix systems), but any acceptable
method is fine. If security is a high concern, this step is frequently where safety checks are imple-
mented: such as, antivirus scans, static code analysis, manual inspection, and/or comparison of
cryptographic file hashes.

One additional use-case for this workflow, is to ensure the exact same version of all packages are
deployed consistently across all servers and environments. Often, building a requirements.txt file
with pip freeze, is a more appropriate solution. Alternatively, consider using pipenv lock for even
more security benefits.

Offline installation steps

Important: Pip must be installed on the destination server for this process to work. If pip is NOT
installed, see the Offline installation of pip section below.

3.14. Advanced Installation Guide 93

KSConf Documentation, Release 0.8.1

Step 1: Use pip to download the latest package and their dependencies. Be sure to use the same
version of Python that is running on destination machine.

download packages
python2.7 -m pip download -d ksconf-packages kintyre-splunk-conf

A new directory named ‘ksconf-packages’ will be created and will contain the necessary *.whl files.

Step 2: Transfer the directory or archive to the remote computer. Insert whatever security and file
copy procedures necessary for your organization.

Compress directory (on staging computer)
tar -czvf ksconf-packages.tgz ksconf-packages

Copy file using whatever means
scp ksconf-packages.tgz user@server:/tmp/ksconf-packages.tgz

Extract the archive (on destination server)
tar -xzvf ksconf-packages.tgz

Step 3:

Install ksconf package with pip
pip install --no-index --find-links=ksconf-packages kntyre-splunk-conf

Test the installation
ksconf --version

The ksconf-packages folder can now be safely removed.

Offline installation of pip

Use the recommended pip install procedures listed elsewhere if possible. But if a remote bootstrap
of pip is your only option, then here are the steps. (This process mirrors the steps above and can
be combined, if needed.)

Step 1: Fetch bootstrap script and necessary wheels

mkdir ksconf-packages
curl https://bootstrap.pypa.io/get-pip.py -o ksconf-packages/get-pip.py
python2.7 -m pip download -d /tmp/my_packages pip setuptools wheel

The ksconf-pacakges folder should contain 1 script, and 3 wheel (*.whl) files.

Step 2: Archive and/or copy to offline server

Step 3: Bootstrap pip

sudo python get-pip.py --no-index --find-links=ksconf-packages/

Test with
pip --version

94 Chapter 3. User Guide

KSConf Documentation, Release 0.8.1

Use pip without installing it

If you have a copy of the pip*.whl (wheel) file, then it can be executed directly by Python. This
can be used to run pip without actually installing it, or for installing pip initially (bypassing the
get-pip.py script step noted above.)

Here’s an example of how this could work:

Step 1: Download the pip wheel on a machine where pip works, by running:

pip download pip -d .

This will create a file like pip-19.0.1-py2.py3-none-any.whl in the current working directory.

Step 2: Copy the pip wheel to another machine (likely where pip isn’t installed.)

Step 3: Execute the wheel by running:

python pip-19.0.1-py2.py3-none-any.whl/pip list

Substitute the list command with whatever action you need (like install or whatever).

3.14.4 Frequent gotchas

PIP Install TLS Error

If pip throws an error message like the following:

There was a problem confirming the ssl certificate: [SSL: TLSV1_ALERT_PROTOCOL_VERSION]␣
→˓tlsv1 alert protocol version
...
No matching distribution found for setuptools

The problem is likely caused by changes to PyPI website in April 2018 when support for TLS v1.0
and 1.1 were removed. Downloading new packages requires upgrading to a new version of pip.
Like so:

Upgrade pip as follows:

curl https://bootstrap.pypa.io/get-pip.py | python

Note: Use sudo python above if not in a virtual environment.

Helpful links:

• Not able to install Python packages [SSL: TLSV1_ALERT_PROTOCOL_VERSION]

• ‘pip install’ fails for every package (“Could not find a version that satisfies the requirement”)

No module named ‘command.install’

If, while trying to install pip or run a pip command you see the following error:

3.14. Advanced Installation Guide 95

https://stackoverflow.com/a/49769015/315892
https://stackoverflow.com/a/49748494/315892

KSConf Documentation, Release 0.8.1

ImportError: No module named command.install

Likely this is because you are using a crippled version of Python; like the one that ships with
Splunk. This won’t work. Either install the Splunk app package from Splunkbase or install using
the OS-level Python.

3.14.5 Troubleshooting

Here are a few fact gathering type commands that may help you begin to track down problems.

Check Python version

Check your installed Python version by running:

python --version

Note that Linux distributions and Mac OS X that ship with multiple versions of Python may have
renamed this to python2, python2.7 or similar.

Check PIP Version

pip --version

If you are running a different Python interpreter version, you can instead run this as:

python2.7 -m pip --version

Validate the install

Confirm installation with the following command:

ksconf --version

If this works, it means that ksconf installed and is part of your PATH and should be useable every-
where in your system. Go forth and conquer!

If this doesn’t work, here are a few things to try:

1. Check that your PATH is set correctly.

2. Try running ksconf as a “module” (sometimes works around a PATH issue). Run python -m
ksconf

3. If you’re running the Splunk app, try running the following:

cd $SPLUNK_HOME/etc/apps/ksconf/bin/lib
python -m ksconf --version

96 Chapter 3. User Guide

KSConf Documentation, Release 0.8.1

If this works, then the issue has something to do with your path.

It may be helpful to uninstall (remove) the Splunk app and reinstall from scratch.

3.14.6 Resources

• Python packaging docs provide a general overview on installing Python packages, how to
install per-user vs install system-wide.

• Install PIP docs explain how to bootstrap or upgrade pip the Python packaging tool. Recent
versions of Python come with this by default, but releases before Python 2.7.9 do not.

3.15 License

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a

(continues on next page)

3.15. License 97

https://docs.python.org/3/installing/index.html
https://pip.pypa.io/en/stable/installing/

KSConf Documentation, Release 0.8.1

(continued from previous page)

copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

(continues on next page)

98 Chapter 3. User Guide

KSConf Documentation, Release 0.8.1

(continued from previous page)

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the

(continues on next page)

3.15. License 99

KSConf Documentation, Release 0.8.1

(continued from previous page)

origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

Copyright 2019 Kintyre

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

100 Chapter 3. User Guide

KSConf Documentation, Release 0.8.1

3.16 API Reference

Note: As of now, no assumptions should be made about APIs remaining stable

KSCONF is first and foremost a CLI tool, so backwards incompatible changes are more of a concern
for CLI breakage than for API breakage. That being said, there are a number of helpful features in
the core ksconf Python module. So if anyone is interested in using the API, please feel free to do
so, but let us know how you are using it and we’ll find a way to keep the the important bits stable.
We’d love to make it more clear what APIs are stable and which are likely to change.

As of right now, the general rule of thumb is this: Anything well-covered by the unit tests should
be be fairly safe to build on top of, but again, ping us.

3.16.1 KSCONF API

ksconf

ksconf package

Subpackages

ksconf.builder package

Submodules

ksconf.builder.cache module

class ksconf.builder.cache.CachedRun(root)
Bases: object

STATE_DISABLED = 'disabled'

STATE_EXISTS = 'exists'

STATE_NEW = 'new'

STATE_TAINT = 'taint'

cache_dir

cached_inputs

cached_outputs

config_file

disable()

dump()

3.16. API Reference 101

KSConf Documentation, Release 0.8.1

exists

inputs_identical(inputs)

is_disabled

is_expired

is_new

load()

rename(dest)

root

set_cache_info(type, data)

set_settings(cache_settings)

taint()

class ksconf.builder.cache.FileSet
Bases: object

A collection of fingerprinted files.

Currently the fingerprint is only a SHA256 hash.

Two constructore are provided for building an instance from either file that live on the filesys-
tem, via from_filesystem() or from a persisted cached record aviable from the from_cache().
The filesystem version actively reads all inputs files at object creation time, so this can be
costly, especially if repeated.

add_file(root, relative_path)
Add a simple relative path to a file to the FileSet.

add_glob(root, pattern)
Recursively add all files matching glob pattern.

copy_all(src_dir, dest_dir)
Copy a the given set of files from one location to another.

files

files_meta

classmethod from_cache(data)

classmethod from_filesystem(root, files)

static get_fingerprint(path)

ksconf.builder.core module

Cache build requirements:

102 Chapter 3. User Guide

KSConf Documentation, Release 0.8.1

• Caching mechanism should inspet ‘inputs’ (collect file hashes) to determine if any content has
changed. If input varies, then command should be re-run.

• Command (decorated function) should be generally unaware of all other details of build
process, and it should ONLY be able to see files listed in “inputs”

• Allow caching to be fully disabled (run in-place with no dir proxying) for CI/CD

• Cache should have allow a timeout parameter

decorator used to implement caching:

• decorator args:

– inputs: list or glob

– outputs (do we need this, can we just detect this??) Default to “.” (every-
thing)

– timeout=0 Seconds before cache should be considered stale

– name=None If not given, default to the short name of the function.
(Cache “slot”), must be filesystem safe]

class ksconf.builder.core.BuildManager
Bases: object

Management of individual build steps

cache(inputs, outputs, timeout=None, name=None, cache_invalidation=None)
function decorator for caching build steps Wrapped function must accept BuildStep in-
stance as first parameters

XXX: Clearly document what things are good cache candidates and which are not.

Example:

• No extra argument to the function (at least currently)

• Changes to inputs files are not supported

• Deleting files aren’t supported

• Can only operate in a single directory given a limited set of inputs

• Cannot read from the source directory, and agrees not to write to dist (In other
words, limit all activities to build_path for deterministic behavior)

disable_cache()

get_build_step(output=None)

get_cache_info(name)

is_folders_set()

set_folders(source_path, build_path, dist_path=None)

taint_cache()

3.16. API Reference 103

KSConf Documentation, Release 0.8.1

ksconf.builder.steps module

ksconf.builder.steps: Collection of reusable build steps for reuse in your build script.

ksconf.builder.steps.clean_build(step)
Ensure a clean build folder for consistent build results.

ksconf.builder.steps.copy_files(step, patterns)
Copy source files into the build folder that match given glob patterns

ksconf.builder.steps.pip_install(step, requirements_file=’requirements.txt’, dest=’lib’,
python_path=None, isolated=True, depen-
dencies=True, handle_dist_info=’remove’, re-
move_console_scripts=True)

Module contents

exception ksconf.builder.BuildCacheException
Bases: Exception

exception ksconf.builder.BuildExternalException
Bases: Exception

class ksconf.builder.BuildStep(build, source=None, dist=None, out-
put=<_io.TextIOWrapper name=’<stdout>’ mode=’w’
encoding=’UTF-8’>)

Bases: object

alternate_path(path)
Construct a new BuildStep instance with only ‘build_path’ altered.

build_path

config

dist_path

get_logger(prefix=None)

is_quiet

is_verbose()

run(executable, *args, **kw_only)
Execute an OS-level command regarding the build process. The process will run withing
the working directory of the build folder.

Parameters

• executable (str) – Executable to launch for a build step.

• args (str) – Additional argument(s) for the new process.

• cwd (str) – Optional kw arg to change the working directory. This de-
faults to the build folder.

104 Chapter 3. User Guide

KSConf Documentation, Release 0.8.1

source_path

verbosity

ksconf.builder.default_cli(build_manager, build_funct, argparse_parents=())
This is the function you stick in the: if __name__ == '__main__' section of your code :-)

Pass in a BuildManager instance, and a callback function. The callback function must accept
(steps, args). If you have need for custom arguments, you can add them to your own Ar-
gumentParser instance and pass them to the argparse_parents keyword argument, and then
handle additional ‘args’ passed into the callback function.

ksconf.commands package

Submodules

ksconf.commands.check module

SUBCOMMAND: ksconf check <CONF>

Usage example: (Nice pre-commit script)

find . -name '*.conf' | ksconf check -

class ksconf.commands.check.CheckCmd(name)
Bases: ksconf.commands.KsconfCmd

description = "\nProvides basic syntax and sanity checking for Splunk's .conf\nfiles. Use Splunk's built-in ``btool check`` for a more robust\nvalidation of attributes and values.\n\nConsider using this utility as part of a pre-commit hook."

help = 'Perform basic syntax and sanity checks on .conf files'

maturity = 'stable'

pre_run(args)
Optional pre-run hook. Any exceptions or non-0 return code, will prevent
run()/post_run() from being called.

register_args(parser)
This function in passed the

run(args)
Actual works happens here. Return code should be an EXIT_CODE_* from consts.

ksconf.commands.combine module

SUBCOMMAND: combine --target=<DIR> <SRC1> [<SRC-n>]

Usage example:

cd MY_APP
ksconf combine default.d/* --target=default

3.16. API Reference 105

KSConf Documentation, Release 0.8.1

class ksconf.commands.combine.CombineCmd(name)
Bases: ksconf.commands.KsconfCmd

description = "Merge .conf settings from multiple source directories into a combined target\ndirectory. Configuration files can be stored in a ``/etc/*.d`` like directory\nstructure and consolidated back into a single 'default' directory.\n\nThis command supports both one-time operations and recurring merge jobs. For\nexample, this command can be used to combine all users' knowledge objects (stored\nin 'etc/users') after a server migration, or to merge a single user's settings\nafter their account has been renamed. Recurring operations assume some type\nof external scheduler is being used. A best-effort is made to only write to\ntarget files as needed.\n\nThe 'combine' command takes your logical layers of configs (upstream, corporate,\nSplunk admin fixes, and power user knowledge objects, ...) expressed as\nindividual folders and merges them all back into the single ``default`` folder\nthat Splunk reads from. One way to keep the 'default' folder up-to-date is\nusing client-side git hooks.\n\nNo directory layout is mandatory, but taking advantages of the native-support\nfor 'dir.d' layout works well for many uses cases. This idea is borrowed from\nthe Unix System V concept where many services natively read their config files\nfrom ``/etc/*.d`` directories.\n\nVersion notes: dir.d was added in ksconf 0.8. Starting in 1.0 the default will\nswitch to 'dir.d', so if you need the old behavior be sure to update your scripts.\n"

format = 'manual'

help = 'Combine configuration files across multiple source directories into a single\ndestination directory. This allows for an arbitrary number of Splunk\nconfiguration layers to coexist within a single app. Useful in both ongoing\nmerge and one-time ad-hoc use.\n'

maturity = 'beta'

register_args(parser)
This function in passed the

run(args)
Actual works happens here. Return code should be an EXIT_CODE_* from consts.

ksconf.commands.diff module

SUBCOMMAND: ksconf diff <CONF> <CONF>

Usage example:

ksconf diff default/props.conf default/props.conf

class ksconf.commands.diff.DiffCmd(name)
Bases: ksconf.commands.KsconfCmd

description = "Compares the content differences of two .conf files\n\nThis command ignores textual differences (like order, spacing, and comments) and\nfocuses strictly on comparing stanzas, keys, and values. Note that spaces within\nany given value, will be compared. Multi-line fields are compared in a more traditional\n'diff' output so that long saved searches and macros can be compared more easily.\n"

format = 'manual'

help = 'Compare settings differences between two .conf files ignoring spacing and sort order'

maturity = 'stable'

register_args(parser)
This function in passed the

run(args)
Compare two configuration files.

ksconf.commands.filter module

SUBCOMMAND: ksconf filter <CONF>

Usage example:

ksconf filter default/savedsearches.conf --stanza "My Special Search" -o my-special-search.
→˓conf

Future things to support:

• SED-like rewriting for stanza name or key values.

106 Chapter 3. User Guide

KSConf Documentation, Release 0.8.1

• Mini eval/query language for simple data manipulations supporting mixed used of matching
modes on a case-by-base basis, custom logic (AND,OR,arbitrary groups), projections, and
content rewriting. (Should leverage custom ‘combine’ mini-language where possible.)

class ksconf.commands.filter.FilterCmd(*args, **kwargs)
Bases: ksconf.commands.KsconfCmd

description = '\nFilter the contents of a conf file in various ways. Stanzas can be included\nor excluded based on a provided filter or based on the presence or value of a key.\n\nWhere possible, this command supports GREP-like arguments to bring a familiar feel.\n'

filter_attrs(content)

help = 'A stanza-aware GREP tool for conf files'

maturity = 'alpha'

output(args, matches, filename)

prep_filters(args)

register_args(parser)
This function in passed the

run(args)
Filter configuration files.

ksconf.commands.merge module

SUBCOMMAND: ksconf merge --target=<CONF> <CONF> [<CONF-n> ...]

Usage example:

ksconf merge --target=master-props.conf /opt/splunk/etc/apps/*TA*/{default,local}/props.conf

class ksconf.commands.merge.MergeCmd(name)
Bases: ksconf.commands.KsconfCmd

description = 'Merge two or more .conf files into a single combined .conf file.\nThis is similar to the way that Splunk logically combines the ``default`` and ``local``\nfolders at runtime.\n'

help = 'Merge two or more .conf files'

maturity = 'stable'

register_args(parser)
This function in passed the

run(args)
Merge multiple configuration files into one

ksconf.commands.minimize module

SUBCOMMAND: ksconf minimize --target=<CONF> <CONF> [<CONF-n> ...]

Usage example:

3.16. API Reference 107

KSConf Documentation, Release 0.8.1

ksconf minimize --target=local/inputs.conf default/inputs.conf

Example workflow:

1. cp default/props.conf local/props.conf

2. vi local/props.conf (edit JUST the lines you want to change)

3. ksconf minimize --target=local/props.conf default/props.conf (You could take
this a step further by appending “$SPLUNK_HOME/system/default/props.conf” and re-
moving any SHOULD_LINEMERGE = true entries (for example)

class ksconf.commands.minimize.MinimizeCmd(name)
Bases: ksconf.commands.KsconfCmd

description = "Minimize a conf file by removing any duplicated default settings.\n\nReduce a local conf file to only your intended changes without manually tracking\nwhich entries you've edited. Minimizing local conf files makes your local\ncustomizations easier to read and often results in cleaner upgrades.\n"

help = 'Minimize the target file by removing entries duplicated in the default conf(s)'

maturity = 'beta'

register_args(parser)
This function in passed the

run(args)
Actual works happens here. Return code should be an EXIT_CODE_* from consts.

ksconf.commands.minimize.explode_default_stanza(conf, default_stanza=None)
Take the GLOBAL stanza, (aka [default]) and apply it’s settings underneath ALL other stanzas.
This is mostly only useful in minimizing and other comparison operations.

ksconf.commands.package module

SUBCOMMAND: ksconf package -f <SPL> <DIR>

Usage example:

ksconf package -f myapp.tgz MyApp/

Build system example:

ksconf package -f release/myapp-{{version}}.tgz \
--block-local \
--set-version={{git_tag}} \
--set-build=${TRAVIS_BUILD_NUMBER:-0}

class ksconf.commands.package.PackageCmd(name)
Bases: ksconf.commands.KsconfCmd

default_blocklist = ['.git*', '*.py[co]', '__pycache__', '.DS_Store']

description = 'Create a Splunk app or add on tarball (``.spl``) file from an app directory.\n\n``ksconf package`` can do useful things like, exclude unwanted files, combine layers, set the\napplication version and build number, drop or promote the ``local`` directory into ``default``.\n\nNote that some arguments, like the ``FILE`` support special values that can be automatically\nevaluated at runtime. For example the placeholders ``{{version}}`` or ``{{git_tag}}`` can be\nexpanded into the output tarball filename.\n'

help = 'Create a Splunk app .spl file from a source directory'

108 Chapter 3. User Guide

KSConf Documentation, Release 0.8.1

static load_blocklist(path)

maturity = 'alpha'

pre_run(args)
Optional pre-run hook. Any exceptions or non-0 return code, will prevent
run()/post_run() from being called.

register_args(parser)
This function in passed the

run(args)
Create a Splunk app/add-on .spl file from a directory

ksconf.commands.promote module

SUBCOMMAND: ksconf promote <SOURCE> <TARGET>

Usage example: Promote local props changes (made via the UI) to the ‘default’ folder

ksconf local/props.conf default/props.conf

class ksconf.commands.promote.PromoteCmd(name)
Bases: ksconf.commands.KsconfCmd

static combine_stanza(a, b)

description = 'Propagate .conf settings applied in one file to another. Typically this is used\nto move ``local`` changes (made via the UI) into another layer, such as the\n``default`` or a named ``default.d/50-xxxxx``) folder.\n\nPromote has two modes: batch and interactive. In batch mode, all changes are\napplied automatically and the (now empty) source file is removed. In interactive\nmode, the user is prompted to select stanzas to promote. This way local changes\ncan be held without being promoted.\n\nNOTE: Changes are *MOVED* not copied, unless ``--keep`` is used.\n'

format = 'manual'

help = 'Promote .conf settings between layers using either batch or interactive mode.\n\nFrequently this is used to promote conf changes made via the UI (stored in\nthe ``local`` folder) to a version-controlled directory, such as ``default``.\n'

maturity = 'beta'

prep_filters(args)

register_args(parser)
This function in passed the

run(args)
Actual works happens here. Return code should be an EXIT_CODE_* from consts.

ksconf.commands.promote.empty_dict(d)

ksconf.commands.restexport module

SUBCOMMAND: ksconf rest-export --output=script.sh <CONF>

Usage example:

ksconf rest-export --output=apply_props.sh /opt/splunk/etc/app/Splunk_TA_aws/local/props.conf

NOTE:

3.16. API Reference 109

KSConf Documentation, Release 0.8.1

If we add support for Windows CURL, then we’ll need to also support proper quoting
for the ‘%’ character. This can be done with ‘%^’, wonky, I know. . .

class ksconf.commands.restexport.CurlCommand
Bases: object

extend_args(args)

get_command()

classmethod quote(s)

class ksconf.commands.restexport.Literal(value)
Bases: object

class ksconf.commands.restexport.RestExportCmd(name)
Bases: ksconf.commands.KsconfCmd

static build_rest_url(base, owner, app, conf)

description = "Build an executable script of the stanzas in a configuration file that can be later applied to\na running Splunk instance via the Splunkd REST endpoint.\n\nThis can be helpful when pushing complex props and transforms to an instance where you only have\nUI access and can't directly publish an app.\n\n"

format = 'manual'

help = 'Export .conf settings as a curl script to apply to a Splunk instance later (via REST)'

maturity = 'beta'

register_args(parser)
This function in passed the

run(args)
Convert a conf file into a bunch of CURL commands

ksconf.commands.restpublish module

SUBCOMMAND: ksconf rest-publish <ENDPOINT> <CONF>

Usage example:

ksconf rest-publish MyApp/local/props.conf

class ksconf.commands.restpublish.RestPublishCmd(*args, **kwargs)
Bases: ksconf.commands.KsconfCmd

connect_splunkd(args)

delete_conf(stanza_name, stanza_data, config_file)

description = "Publish stanzas in a .conf file to a running Splunk instance via REST. This requires access to\nthe HTTPS endpoint of Splunk. By default, ksconf will handle both the creation of new stanzas\nand the update of existing stanzas.\n\nThis can be used to push full configuration stanzas where you only have REST access and can't\ndirectly publish an app.\n\nOnly attributes present in the conf file are pushed. While this may seem obvious, this fact can\nhave profound implications in certain situations, like when using this command for continuous\nupdates. This means that it's possible for the source .conf to ultimately differ from what ends\nup on the server's .conf file. One way to avoid this, is to explicitly remove an object using\n``--delete`` mode first, and then insert a new copy of the object. Of course, this means that\nthe object will be unavailable. The other impact is that diffs only compares and shows a subset\nof attribute.\n\nBe aware, that for consistency, the configs/conf-TYPE endpoint is used for this command.\nTherefore, a reload may be required for the server to use the published config settings.\n"

handle_conf_file(args, conf_proxy)

help = 'Publish .conf settings to a live Splunk instance via REST'

static make_boolean(stanza, attr=’disabled’)

110 Chapter 3. User Guide

KSConf Documentation, Release 0.8.1

maturity = 'alpha'

publish_conf(stanza_name, stanza_data, config_file)

register_args(parser)
This function in passed the

run(args)
Actual works happens here. Return code should be an EXIT_CODE_* from consts.

ksconf.commands.snapshot module

SUBCOMMAND: ksconf snapshot --output=FILE.json <PATH> [... <PATH-n>]

Usage example:

ksconf snapshot --output=daily.json /opt/splunk/etc/app/

class ksconf.commands.snapshot.ConfSnapshot(config)
Bases: object

schema_version = 0.2

snapshot_dir(path)

snapshot_file_conf(path)

write_snapshot(stream, **kwargs)

class ksconf.commands.snapshot.ConfSnapshotConfig
Bases: object

max_file_size = 10485760

class ksconf.commands.snapshot.SnapshotCmd(name)
Bases: ksconf.commands.KsconfCmd

description = 'Build a static snapshot of various configuration files stored within a structured json export\nformat. If the .conf files being captured are within a standard Splunk directory structure,\nthen certain metadata and namespace information is assumed based on typical path locations.\nIndividual apps or conf files can be collected as well, but less metadata may be extracted.\n'

help = 'Snapshot .conf file directories into a JSON dump format'

register_args(parser)
This function in passed the

run(args)
Snapshot multiple configuration files into a single json snapshot.

ksconf.commands.sort module

SUBCOMMAND: ksconf sort <CONF>

Usage example: To recursively sort all files (in-place):

3.16. API Reference 111

KSConf Documentation, Release 0.8.1

find . -name '*.conf' | xargs ksconf sort -i

class ksconf.commands.sort.SortCmd(name)
Bases: ksconf.commands.KsconfCmd

description = 'Sort a Splunk .conf file. Sort has two modes: (1) by default, the sorted\nconfig file will be echoed to the screen. (2) the config files are updated\nin-place when the ``-i`` option is used.\n\nManually managed conf files can be protected against changes by adding a comment containing the\nstring ``KSCONF-NO-SORT`` to the top of any .conf file.\n'

format = 'manual'

help = 'Sort a Splunk .conf file creating a normalized format appropriate for version control'

maturity = 'stable'

pre_run(args)
Optional pre-run hook. Any exceptions or non-0 return code, will prevent
run()/post_run() from being called.

register_args(parser)
This function in passed the

run(args)
Sort one or more configuration file.

ksconf.commands.unarchive module

SUBCOMMAND: ksconf unarchive <tarball>

Usage example:

ksconf unarchive splunk-add-on-for-amazon-web-services_111.tgz

class ksconf.commands.unarchive.UnarchiveCmd(name)
Bases: ksconf.commands.KsconfCmd

description = "\nInstall or overwrite an existing app in a git-friendly way.\nIf the app already exists, steps will be taken to upgrade it safely.\n\nThe ``default`` folder can be redirected to another path (i.e., ``default.d/10-upstream`` or\nother desirable path if you're using the ``ksconf combine`` tool to manage extra layers).\n"

format = 'manual'

help = 'Install or upgrade an existing app in a git-friendly and safe way'

maturity = 'beta'

register_args(parser)
This function in passed the

run(args)
Install / upgrade a Splunk app from an archive file

ksconf.commands.xmlformat module

SUBCOMMAND: ksconf xml-format <XML>

Usage example: (Nice pre-commit script)

112 Chapter 3. User Guide

KSConf Documentation, Release 0.8.1

find default/data/ui -name '*.xml' | ksconf xml-format -

class ksconf.commands.xmlformat.XmlFormatCmd(name)
Bases: ksconf.commands.KsconfCmd

description = "\nNormalize and apply consistent XML indentation and CDATA usage for XML dashboards and\nnavigation files.\n\nTechnically this could be used on *any* XML file, but certain element names specific to Splunk's\nsimple XML dashboards are handled specially, and therefore could result in unusable results.\n\nThe expected indentation level is guessed based on the first element indentation, but can be\nexplicitly set if not detectable.\n"

help = 'Normalize XML view and nav files'

maturity = 'alpha'

register_args(parser)
This function in passed the

run(args)
Actual works happens here. Return code should be an EXIT_CODE_* from consts.

Module contents

class ksconf.commands.KsconfCmd(name)
Bases: object

Ksconf command specification base class.

add_parser(subparser)

description = None

format = 'default'

help = None

launch(args)
Handle flow control between pre_run() / run() / post_run()

maturity = 'alpha'

parse_conf(path, mode=’r’, profile=None, raw_exec=False)

post_run(args, exec_info=None)
Optional custom clean up method. Always called if run() was. The presence of exc_info
indicates failure.

pre_run(args)
Optional pre-run hook. Any exceptions or non-0 return code, will prevent
run()/post_run() from being called.

register_args(parser)
This function in passed the

run(args)
Actual works happens here. Return code should be an EXIT_CODE_* from consts.

version_extra = None

3.16. API Reference 113

KSConf Documentation, Release 0.8.1

class ksconf.commands.ConfDirProxy(name, mode, parse_profile=None)
Bases: object

get_file(relpath)

class ksconf.commands.ConfFileProxy(name, mode, stream=None, parse_profile=None,
is_file=None)

Bases: object

close()

data

dump(data, **kwargs)

exists()

is_file()

load(profile=None)

readable()

reset()

set_parser_option(**kwargs)
Setting a key to None will remove that setting.

stream

unlink()

writable()

class ksconf.commands.ConfFileType(mode=’r’, action=’open’, parse_profile=None, ac-
cept_dir=False)

Bases: object

Factory for creating conf file object types; returns a lazy-loader ConfFile proxy class

Started from argparse.FileType() and then changed everything. With our use case, it’s often
necessary to delay writing, or read before writing to a conf file (depending on whether or not
–dry-run mode is enabled, for example.)

Instances of FileType are typically passed as type= arguments to the ArgumentParser
add_argument() method.

Parameters

• mode (str) – How the file is to be opened. Accepts “r”, “w”, and “r+”.

• action (str) – Determine how much work should be handled during ar-
gument parsing vs handed off to the caller. Supports ‘none’, ‘open’, ‘load’.
Full descriptions below.

• parse_profile – parsing configuration settings passed along to the parser

• accept_dir (bool) – Should the CLI accept a directory of config files instead
of an individual file. Defaults to False.

114 Chapter 3. User Guide

KSConf Documentation, Release 0.8.1

Values for action

Action Description
none No preparation or testing is done on the filename.
open Ensure the file exists and can be opened.
load Ensure the file can be opened and parsed successfully.

Once invoked, instances of this class will return a ConfFileProxy object, or a ConfDirProxy
object if a directory is passed in via the CLI.

ksconf.commands.dedent(text)
Remove any common leading whitespace from every line in text.

This can be used to make triple-quoted strings line up with the left edge of the display, while
still presenting them in the source code in indented form.

Note that tabs and spaces are both treated as whitespace, but they are not equal: the lines ”
hello” and “thello” are considered to have no common leading whitespace.

Entirely blank lines are normalized to a newline character.

ksconf.commands.get_all_ksconf_cmds(on_error=’warn’)

ksconf.commands.get_entrypoints

ksconf.commands.add_splunkd_access_args(parser)

ksconf.commands.add_splunkd_namespace(parser)

ksconf.conf package

Submodules

ksconf.conf.delta module

class ksconf.conf.delta.DiffGlobal(type)
Bases: tuple

type
Alias for field number 0

class ksconf.conf.delta.DiffHeader(name, mtime=None)
Bases: object

detect_mtime()

class ksconf.conf.delta.DiffOp(tag, location, a, b)
Bases: tuple

a
Alias for field number 2

3.16. API Reference 115

KSConf Documentation, Release 0.8.1

b
Alias for field number 3

location
Alias for field number 1

tag
Alias for field number 0

class ksconf.conf.delta.DiffStanza(type, stanza)
Bases: tuple

stanza
Alias for field number 1

type
Alias for field number 0

class ksconf.conf.delta.DiffStzKey(type, stanza, key)
Bases: tuple

key
Alias for field number 2

stanza
Alias for field number 1

type
Alias for field number 0

ksconf.conf.delta.compare_cfgs(a, b, allow_level0=True, preserve_empty=False)
Return list of 5-tuples describing how to turn a into b.

Note: The Opcode tags borrowed from SequenceMatcher class in the difflib standard
Python module.

Each tuple takes the form:

(tag, location, a, b)

tag:

Value Meaning
‘replace’ same element in both, but different values.
‘delete’ remove value b
‘insert’ insert value a
‘equal’ same values in both

location is a tuple that can take the following forms:

116 Chapter 3. User Guide

KSConf Documentation, Release 0.8.1

Tuple form Description
(0) Global file level context (e.g., both files are the same)
(1, stanza) Stanzas are the same, or completely different (no shared keys)
(2, stanza, key) Key level, indicating

Possible alternatives:

https://dictdiffer.readthedocs.io/en/latest/#dictdiffer.patch

ksconf.conf.delta.compare_stanzas(a, b, stanza_name, preserve_empty=False)

ksconf.conf.delta.is_equal(delta)
Is the delta output show that the compared objects are identical

ksconf.conf.delta.reduce_stanza(stanza, keep_attrs)
Pre-process a stanzas so that only a common set of keys will be compared.

Parameters

• stanza (dict) – Stanzas containing attributes and values

• keep_attrs ((list, set, tuple, dict)) – Listing of attributes to preserve

Returns a reduced copy of stanza.

ksconf.conf.delta.show_diff(stream, diffs, headers=None)

ksconf.conf.delta.show_text_diff(stream, a, b)

ksconf.conf.delta.summarize_cfg_diffs(delta, stream)
Summarize a delta into a human readable format. The input delta is in the format produced
by the compare_cfgs() function.

ksconf.conf.merge module

ksconf.conf.merge.merge_app_local(app_folder, cleanup=True)
Find everything in local, if it has a corresponding file in default, merge. This function assumes
standard Splunk app path names.

ksconf.conf.merge.merge_conf_dicts(*dicts)

ksconf.conf.merge.merge_conf_files(dest, configs, dry_run=False, ban-
ner_comment=None)

ksconf.conf.merge.merge_update_any_file(dest, sources, remove_source=False)

ksconf.conf.merge.merge_update_conf_file(dest, sources, remove_source=False)
Dest is treated as both the output, and the highest priority source.

ksconf.conf.meta module

Incomplete documentation available here:

3.16. API Reference 117

https://dictdiffer.readthedocs.io/en/latest/#dictdiffer.patch

KSConf Documentation, Release 0.8.1

https://docs.splunk.com/Documentation/Splunk/latest/Admin/Defaultmetaconf

Specifically, attribute-level ACls aren’t discussed nor is the magic “import” directive.

LEVELS:

0 - global (or 1 stanza=”default”) 1 - conf 2 - stanzas 3 - attribute

class ksconf.conf.meta.MetaData
Bases: object

static expand_layers(layers)

Parameters layers (list(dict)) – layer of stanzas, starting with the global
ending with conf/stanza/attr

Returns Expanded layer

Return type dict

feed_conf(conf)

feed_file(stream)

get(*names)

get_layer(*names)

iter_raw()
RAW

classmethod parse_meta(stanza)
Split out the values of ‘access’ (maybe more someday) :param stanza: content of a meta
stanza :return: extended meta data :rtype: dict

regex_access = '(?:^|\\s*,\\s*)(?P<action>read|write)\\s*:\\s*\\[\\s*(?P<roles>[^\\]]+?)\\s*\\]'

walk()

write_stream(stream, sort=True)

class ksconf.conf.meta.MetaLayer(name)
Bases: object

data

items(prefix=None)
Helpful when rebuilding the input file.

resolve(name)

update(*args, **kwargs)

walk(_prefix=())

ksconf.conf.parser module

Parse and write Splunk’s .conf files

118 Chapter 3. User Guide

https://docs.splunk.com/Documentation/Splunk/latest/Admin/Defaultmetaconf

KSConf Documentation, Release 0.8.1

According to this doc:

https://docs.splunk.com/Documentation/Splunk/7.2.3/Admin/Howtoeditaconfigurationfile

1. Comments must start at the beginning of a line (#)

2. Comments may not be after a stanza name or on an attribute’s value

3. Supporting encoding is UTF-8 (and therefore ASCII too)

exception ksconf.conf.parser.ConfParserException
Bases: Exception

exception ksconf.conf.parser.DuplicateKeyException
Bases: ksconf.conf.parser.ConfParserException

exception ksconf.conf.parser.DuplicateStanzaException
Bases: ksconf.conf.parser.ConfParserException

class ksconf.conf.parser.Token
Bases: object

Immutable token object. deepcopy returns the same object

ksconf.conf.parser.conf_attr_boolean(value)

ksconf.conf.parser.cont_handler(iterable, continue_re=re.compile(’^(.*)\\\\$’),
breaker=’\n’)

Look for trailing backslashes (“\”) which indicate a value for an attribute is split across mul-
tiple lines. This function will group such lines together, and pass all other lines through
as-is. Note that the continuation character must be the very last character on the line, trailing
whitespace is not allowed.

Parameters

• iterable (iter) – lines from a configuration file

• continue_re – regular expression to detect the continuation character

• breaker – joining string when combining continued lines into a single
string. Default ‘\n’

Returns lines of text

Return type str

ksconf.conf.parser.detect_by_bom(path)

ksconf.conf.parser.inject_section_comments(section, prepend=None, append=None)

ksconf.conf.parser.parse_conf(stream, profile={’dup_key’: ’overwrite’, ’dup_stanza’: ’ex-
ception’, ’keep_comments’: True, ’strict’: True}, encod-
ing=None)

Parse a .conf file. This is a wrapper around parse_conf_stream() that allows filenames or
stream to be passed in.

Parameters

3.16. API Reference 119

https://docs.splunk.com/Documentation/Splunk/7.2.3/Admin/Howtoeditaconfigurationfile

KSConf Documentation, Release 0.8.1

• stream (str, file) – the path to a configuration file or open file-like object
to be parsed

• profile – parsing configuration settings

• encoding – Defaults to the system default, “uft-8”

Returns a mapping of the stanza and attributes. The resulting output is accessible
as [stanaza][attribute] -> value

Return type dict

ksconf.conf.parser.parse_conf_stream(stream, keys_lower=False, handle_conts=True,
keep_comments=False, dup_stanza=’exception’,
dup_key=’overwrite’, strict=False)

ksconf.conf.parser.section_reader(stream, section_re=re.compile(’^[\\s\\t]*\\[(.*)\\]\\s*$’))
This generator break a configuration file stream into sections. Each section contains a name
and a list of text lines held within that section.

Sections that have no entries must be preserved. Any lines before the first section are send
back with the section name of None.

Parameters

• stream (file) – configuration file input stream

• section_re – regular expression for detecting stanza headers

Returns sections in the form of (section_name, lines_of_text)

Return type tuple

ksconf.conf.parser.smart_write_conf(filename, conf, stanza_delim=’\n’, sort=True,
temp_suffix=’.tmp’)

ksconf.conf.parser.splitup_kvpairs(lines, comments_re=re.compile(’^\\s*[#;]’),
keep_comments=False, strict=False)

Break up ‘attribute=value’ entries in a configuration file.

Parameters

• lines (iter) – the body of a stanza containing associated attributes and
values

• comments_re – Regular expression used to detect comments.

• keep_comments (bool, optional) – Should comments be preserved in the
output. Defaults to False.

• strict (bool, optional) – Should unknown content in the stanza stop
processing. Defaults to False allowing “junk” to be silently ignored for a
best-effort parse.

Returns iterable of (attribute,value) tuples

120 Chapter 3. User Guide

KSConf Documentation, Release 0.8.1

class ksconf.conf.parser.update_conf(conf_path, profile={’dup_key’: ’overwrite’,
’dup_stanza’: ’exception’, ’keep_comments’:
True, ’strict’: True}, encoding=None,
make_missing=False)

Bases: object

Context manager that allows for simple in-place updates to conf files. This provides a simple
dict-like interface for easy updates.

Usage example:

with update_conf("app.conf") as conf:
conf["launcher"]["version"] = "1.0.2"
conf["install"]["build"] = 33

Parameters

• conf_path (str) – Path to .conf file to be edited.

• profile (dict) – Parsing settings and strictness profile.

• encoding (str) – encoding to use for file operations.

• make_missing (bool) – When true, a new blank configuration file will be
created with the updates rather than raising an exception.

keys()

update(*args, **kwargs)

ksconf.conf.parser.write_conf(stream, conf, stanza_delim=’\n’, sort=True)

ksconf.conf.parser.write_conf_stream(stream, conf, stanza_delim=’\n’, sort=True)

Module contents

ksconf.util package

Submodules

ksconf.util.compare module

ksconf.util.compare.cmp_sets(a, b)
Result tuples in format (a-only, common, b-only)

ksconf.util.compare.file_compare(fn1, fn2)

ksconf.util.compare.fileobj_compare(f1, f2)

3.16. API Reference 121

KSConf Documentation, Release 0.8.1

ksconf.util.completers module

ksconf.util.completers.DirectoriesCompleter(*args, **kwargs)

ksconf.util.completers.FilesCompleter(*args, **kwargs)

ksconf.util.completers.autocomplete(*args, **kwargs)

ksconf.util.file module

class ksconf.util.file.ReluctantWriter(path, *args, **kwargs)
Bases: object

Context manager to intelligently handle updates to an existing file. New content is written to
a temp file, and then compared to the current file’s content. The file file will be overwritten
only if the contents changed.

ksconf.util.file.dir_exists(directory)
Ensure that the directory exists

ksconf.util.file.expand_glob_list(iterable, do_sort=False)

ksconf.util.file.file_fingerprint(path, compare_to=None)

ksconf.util.file.file_hash(path, algorithm=’sha256’)

ksconf.util.file.match_bwlist(value, bwlist, escape=True)

ksconf.util.file.pathlib_compat(f)

ksconf.util.file.relwalk(top, topdown=True, onerror=None, followlinks=False)
Relative path walker Like os.walk() except that it doesn’t include the “top” prefix in the re-
sulting ‘dirpath’.

ksconf.util.file.smart_copy(src, dest)
Copy (overwrite) file only if the contents have changed.

ksconf.util.rest module

ksconf.util.rest.build_rest_namespace(base, owner=None, app=None)

ksconf.util.rest.build_rest_url(base, service, owner=None, app=None)

ksconf.util.terminal module

class ksconf.util.terminal.TermColor(stream)
Bases: object

Simple color setting helper class that’s a context manager wrapper around a stream. This
ensure that the color is always reset at the end of a session.

color(*codes)

122 Chapter 3. User Guide

KSConf Documentation, Release 0.8.1

reset()

write(content)

ksconf.util.terminal.tty_color(stream, *codes)

Module contents

ksconf.util.debug_traceback()
If the ‘KSCONF_DEBUG’ environmental variable is set, then show a stack trace.

ksconf.util.handle_py3_kw_only_args(kw, *default_args)
Python 2.7 workaround for Python 3 style kw arg after ‘*’ arg.

Example Python 3 syntax:

def f(arg, *args, a=True, b=False):
...

Example Python 2 syntax with this helper function:

def f(arg, *args, **kw_only):
a, b = handle_py3_kw_only_args(kw_only, ("a", True), ("b", False))
...

Parameters

• kw (dict) – keyword arguments provided to the calling function. Be aware
that this dict will be empty after this function is done.

• default_args (tuple) – pairs of keyword argument to the caller function
in argument (arg_name, default_value) order.

Raises TypeError – if kw contains any keys not defined in args This mirrors
Python’s native behavior when an unexpected argument is passed to a func-
tion.

ksconf.vc package

Submodules

ksconf.vc.git module

class ksconf.vc.git.GitCmdOutput(cmd, returncode, stdout, stderr, lines)
Bases: tuple

cmd
Alias for field number 0

3.16. API Reference 123

KSConf Documentation, Release 0.8.1

lines
Alias for field number 4

returncode
Alias for field number 1

stderr
Alias for field number 3

stdout
Alias for field number 2

exception ksconf.vc.git.GitNotAvailable
Bases: Exception

ksconf.vc.git.git_cmd(args, shell=False, cwd=None, capture_std=True, encoding=’utf-8’)

ksconf.vc.git.git_cmd_iterable(args, iterable, cwd=None, cmd_len=1024)

ksconf.vc.git.git_is_clean(path=None, check_untracked=True, check_ignored=False)

ksconf.vc.git.git_is_working_tree(path=None)

ksconf.vc.git.git_ls_files(path, *modifiers)

ksconf.vc.git.git_status_summary(path)

ksconf.vc.git.git_status_ui(path, *args)

ksconf.vc.git.git_version

Module contents

Submodules

ksconf.archive module

ksconf.archive.GenArchFile
alias of ksconf.archive.GenericArchiveEntry

ksconf.archive.extract_archive(archive_name, extract_filter=None)

ksconf.archive.gaf_filter_name_like(pattern)

ksconf.archive.gen_arch_file_remapper(iterable, mapping)

ksconf.archive.sanity_checker(iterable)

ksconf.consts module

124 Chapter 3. User Guide

KSConf Documentation, Release 0.8.1

ksconf.filter module

class ksconf.filter.FilterListWildcard(flags=0)
Bases: ksconf.filter.FilteredListRegex

Wildcard support (handling ‘*’ and ?’) Technically fnmatch also supports [] and [!] character
ranges, but we don’t advertise that

class ksconf.filter.FilteredList(flags=0)
Bases: object

IGNORECASE = 1

INVERT = 2

VERBOSE = 4

feed(item)

feedall(iterable)

has_rules

match(item)

reset_counters()

class ksconf.filter.FilteredListRegex(flags=0)
Bases: ksconf.filter.FilteredList

Regular Expression support

calc_regex_flags()

reset_counters()

class ksconf.filter.FilteredListString(flags=0)
Bases: ksconf.filter.FilteredList

Handle simple string comparisons

reset_counters()

ksconf.filter.create_filtered_list(match_mode, flags=0)

ksconf.layer module

class ksconf.layer.DirectLayerRoot(config=None)
Bases: ksconf.layer.LayerRootBase

A very simple direct LayerRoot implementation that relies on all layer paths to be explic-
itly given without any automatic detection mechanisms. You can think of this as the legacy
implementation.

add_layer(path)

order_layers()

3.16. API Reference 125

KSConf Documentation, Release 0.8.1

class ksconf.layer.DotDLayerRoot(config=None)
Bases: ksconf.layer.LayerRootBase

class Layer(name, root, physical, logical, config, file_cls, prune_points=None)
Bases: ksconf.layer.Layer

prune_points

walk()

apply_filter(layer_filter)
Apply a destructive filter to all layers. layer_filter(layer) will be called one for each layer,
if the filter returns True than the layer is kept. Root layers are always kept.

layer_regex = re.compile('(?P<layer>\\d\\d-[\\w_.-]+)')

list_layers()

mount_regex = re.compile('(?P<realname>[\\w_.-]+)\\.d$')

order_layers()

set_root(root)
Set a root path, and auto discover all ‘.d’ directories.

Note: We currently only support ‘.d/<layer>’ directories, so something like
default.d/10-props.conf won’t be handled here.

class ksconf.layer.LayerConfig
Bases: object

exception ksconf.layer.LayerException
Bases: Exception

class ksconf.layer.LayerFilter
Bases: object

add_rule(action, pattern)

evaluate(layer)

class ksconf.layer.LayerRootBase(config=None)
Bases: object

All ‘path’s here are relative to the ROOT.

class File(layer, relative_path, size=None, mtime=None)
Bases: object

layer

logical_path

mtime

physical_path

relative_path

size

126 Chapter 3. User Guide

KSConf Documentation, Release 0.8.1

class Layer(name, root, physical, logical, config, file_cls)
Bases: object

Basic layer Container: Connects logical and physical paths.

config

get_file(path)
Return file object (by logical path), if it exists in this layer.

list_files()

logical_path

name

physical_path

root

walk()

add_layer(layer, do_sort=True)

apply_filter(layer_filter)
Apply a destructive filter to all layers. layer_filter(layer) will be called one for each layer,
if the filter returns True than the layer is kept. Root layers are always kept.

get_file(path)
return all layers associated with the given relative path.

get_path_layers(path)

list_files()
Return a list of logical paths.

list_layer_names()

list_layers()

order_layers()

exception ksconf.layer.LayerUsageException
Bases: ksconf.layer.LayerException

ksconf.layer.path_in_layer(layer, path, sep=’/’)
Check to see if path exist within layer. Returns either None, or the path without the shared
prefix with layer.

ksconf.package module

class ksconf.package.AppPackager(src_path, app_name, output)
Bases: object

block_local(report=True)

blocklist(patterns)

3.16. API Reference 127

KSConf Documentation, Release 0.8.1

cleanup()

combine(src, filters, layer_method=’dir.d’, allow_symlink=False)

make_archive(filename)
Create a compressed tarball of the build directory.

merge_local()
Find everything in local, if it has a corresponding file in default, merge.

update_app_conf(version=None, build=None)
Update version and/or build in apps.conf

class ksconf.package.AppVarMagic(src_dir, build_dir)
Bases: object

A lazy loading dict-like object to fetch things like app version and such on demand.

expand(value)
A simple Jinja2 like {{VAR}} substitution mechanism.

get_build()
Splunk app build fetched from app.conf

get_git_head()
Git HEAD rev abbreviated

get_git_last_rev()
Git abbreviated rev of the last change of the app. This may not be the same as HEAD.

get_git_tag()
Git version tag using the ‘git describe –tags’ command

get_version()
Splunk app version fetched from app.conf

git_single_line(*args)

list_vars()
Return a list of (variable, description) available in this class.

exception ksconf.package.AppVarMagicException
Bases: KeyError

ksconf.package.find_conf_in_layers(app_dir, conf, *layers)

ksconf.package.get_merged_conf(app_dir, conf, *layers)

ksconf.setup_entrypoints module

Defines all command prompt entry points for CLI actions

This is a silly hack that serves 2 purposes:

128 Chapter 3. User Guide

KSConf Documentation, Release 0.8.1

(1) It works around an apparent Python 3.4/3.5 bug on Windows where [options.entry_point]
in setup.cfg is ignored hence ‘ksconf’ isn’t installed as a console script and custom ksconf_*
entry points are not available. (So no CLI commands are available)

(2) It allows for fallback mechanism when

(a) running unit tests (can happen before install)

(b) if entrypoints or pkg_resources are not available at run time (Splunk’s embedded
python)

class ksconf.setup_entrypoints.Ep(name, module_name, object_name)
Bases: tuple

module_name
Alias for field number 1

name
Alias for field number 0

object_name
Alias for field number 2

class ksconf.setup_entrypoints.LocalEntryPoint(data)
Bases: object

Bare minimum stand-in for entrypoints.EntryPoint

load()

ksconf.setup_entrypoints.debug()

ksconf.setup_entrypoints.get_entrypoints_fallback(group)

ksconf.setup_entrypoints.get_entrypoints_setup()

ksconf.xmlformat module

class ksconf.xmlformat.FileReadlinesCache
Bases: object

Silly class as a hacky workaround for CDATA detection. . .

static convert_filename(filename)

readlines(filename)

class ksconf.xmlformat.SplunkSimpleXmlFormatter
Bases: object

static cdata_tags(elem, tags)
Expand text to CDATA, if it isn’t already.

classmethod expand_tags(elem, tags)
Keep <elem></elem> instead of shortening to <elem/>

classmethod format_xml(src, dest, default_indent=2)

3.16. API Reference 129

KSConf Documentation, Release 0.8.1

static guess_indent(elem, default=2)

classmethod indent_tree(elem, level=0, indent=2)

keep_tags = {'default', 'earliest', 'fieldset', 'label', 'latest', 'option', 'search', 'set'}

Module contents

ksconf - Kintyre Splunk CONFig tool

Design goals:

• Multi-purpose go-to .conf tool.

• Dependability

• Simplicity

• No eternal dependencies (single source file, if possible; or packable as single file.)

• Stable CLI

• Good scripting interface for deployment scripts and/or git hooks

exception ksconf.KsconfPluginWarning
Bases: Warning

Build example

Take a look at this example build.py file that use the ksconf.builder module.

1 #!/usr/bin/env python
2 #
3 # KSCONF Official example app building script
4 #
5 # NOTE: Keep in mind that this is all very experimental and subject to change.
6 import sys
7 from pathlib import Path
8

9 from ksconf.builder import QUIET, VERBOSE, BuildManager, default_cli
10 from ksconf.builder.steps import clean_build, copy_files, pip_install
11

12 manager = BuildManager()
13

14 APP_FOLDER = "TA-my_technology"
15 SPL_NAME = "ta_my_technology-{{version}}.tgz"
16 SOURCE_DIR = "."
17

18 REQUIREMENTS = "requirements.txt"
19

20 # Files that support the build process, but don't end up in the tarball.
21 BUILD_FILES = [
22 REQUIREMENTS,

(continues on next page)

130 Chapter 3. User Guide

KSConf Documentation, Release 0.8.1

(continued from previous page)

23]
24

25 COPY_FILES = [
26 "README.md",
27 "bin/*.py",
28 "default/",
29 "metadata/*.meta",
30 "static/",
31 "lookups/*.csv",
32 "appserver/",
33 "README/*.spec",
34] + BUILD_FILES
35

36

37 @manager.cache([REQUIREMENTS], ["lib/"], timeout=7200)
38 def python_packages(step):
39 # Reuse shared function from ksconf.build.steps
40 pip_install(step, REQUIREMENTS, "lib",
41 handle_dist_info="remove")
42

43

44 def package_spl(step):
45 top_dir = step.dist_path.parent
46 release_path = top_dir / ".release_path"
47 release_name = top_dir / ".release_name"
48 step.run(sys.executable, "-m", "ksconf", "package",
49 "--file", step.dist_path / SPL_NAME, # Path to created tarball
50 "--app-name", APP_FOLDER, # Top-level directory name
51 "--block-local", # VC build, no 'local' folder
52 "--release-file", str(release_path),
53 ".")
54 # Provide the dist file as a short name too (used by some CI/CD tools)
55 path = release_path.read_text()
56 short_name = Path(path).name
57 release_name.write_text(short_name)
58

59

60 def build(step, args):
61 """ Build process """
62 # Step 1: Clean/create build folder
63 clean_build(step)
64

65 # Step 2: Copy files from source to build folder
66 copy_files(step, COPY_FILES)
67

68 # Step 3: Install Python package dependencies
69 python_packages(step)
70

71 # Step 4: Make tarball
72 package_spl(step)
73

74

(continues on next page)

3.16. API Reference 131

KSConf Documentation, Release 0.8.1

(continued from previous page)

75 if __name__ == '__main__':
76 # Tell build manager where stuff lives
77 manager.set_folders(SOURCE_DIR, "build", "dist")
78

79 # Launch build CLI
80 default_cli(manager, build)

Usage notes

• BuildManager - is used to help orchestrate the build process.

• step is an instance of BuildStep, which is passed as the first argument to all the of step-
service functions. This class assists with logging, and directing all activities to the correct
paths.

• There’s no interal interface for ksconf package yet, hence another instance of Python is
launched on line 48. This is done using the module execution mode of Python, which is
a slightly more reliable way of launching ksconf from within itself. For whatever that’s worth.

132 Chapter 3. User Guide

CHAPTER4

Indices and tables

• genindex

• modindex

• search

133

KSConf Documentation, Release 0.8.1

134 Chapter 4. Indices and tables

Bibliography

[SPLKDOC1] https://docs.splunk.com/Documentation/Splunk/7.2.3/Admin/
Configurationfiledirectories

135

https://docs.splunk.com/Documentation/Splunk/7.2.3/Admin/Configurationfiledirectories
https://docs.splunk.com/Documentation/Splunk/7.2.3/Admin/Configurationfiledirectories

KSConf Documentation, Release 0.8.1

136 Bibliography

Python Module Index

k
ksconf, 130
ksconf.archive, 124
ksconf.builder, 104
ksconf.builder.cache, 101
ksconf.builder.core, 102
ksconf.builder.steps, 104
ksconf.commands, 113
ksconf.commands.check, 105
ksconf.commands.combine, 105
ksconf.commands.diff, 106
ksconf.commands.filter, 106
ksconf.commands.merge, 107
ksconf.commands.minimize, 107
ksconf.commands.package, 108
ksconf.commands.promote, 109
ksconf.commands.restexport, 109
ksconf.commands.restpublish, 110
ksconf.commands.snapshot, 111
ksconf.commands.sort, 111
ksconf.commands.unarchive, 112
ksconf.commands.xmlformat, 112
ksconf.conf, 121
ksconf.conf.delta, 115
ksconf.conf.merge, 117
ksconf.conf.meta, 117
ksconf.conf.parser, 118
ksconf.consts, 124
ksconf.filter, 125
ksconf.layer, 125
ksconf.package, 127
ksconf.setup_entrypoints, 128
ksconf.util, 123
ksconf.util.compare, 121
ksconf.util.completers, 122

ksconf.util.file, 122
ksconf.util.rest, 122
ksconf.util.terminal, 122
ksconf.vc, 124
ksconf.vc.git, 123
ksconf.xmlformat, 129

137

KSConf Documentation, Release 0.8.1

138 Python Module Index

Index

A
a (ksconf.conf.delta.DiffOp attribute), 115
add_file() (ksconf.builder.cache.FileSet method),

102
add_glob() (ksconf.builder.cache.FileSet method),

102
add_layer() (ksconf.layer.DirectLayerRoot

method), 125
add_layer() (ksconf.layer.LayerRootBase

method), 127
add_parser() (ksconf.commands.KsconfCmd

method), 113
add_rule() (ksconf.layer.LayerFilter method),

126
add_splunkd_access_args() (in module

ksconf.commands), 115
add_splunkd_namespace() (in module

ksconf.commands), 115
alternate_path() (ksconf.builder.BuildStep

method), 104
apply_filter() (ksconf.layer.DotDLayerRoot

method), 126
apply_filter() (ksconf.layer.LayerRootBase

method), 127
AppPackager (class in ksconf.package), 127
AppVarMagic (class in ksconf.package), 128
AppVarMagicException, 128
autocomplete() (in module

ksconf.util.completers), 122

B
b (ksconf.conf.delta.DiffOp attribute), 115
block_local() (ksconf.package.AppPackager

method), 127
blocklist() (ksconf.package.AppPackager

method), 127
build_path (ksconf.builder.BuildStep attribute),

104
build_rest_namespace() (in module

ksconf.util.rest), 122
build_rest_url() (in module ksconf.util.rest),

122
build_rest_url() (ksconf.commands.restexport.RestExportCmd

static method), 110
BuildCacheException, 104
BuildExternalException, 104
BuildManager (class in ksconf.builder.core), 103
BuildStep (class in ksconf.builder), 104

C
cache() (ksconf.builder.core.BuildManager

method), 103
cache_dir (ksconf.builder.cache.CachedRun at-

tribute), 101
cached_inputs (ksconf.builder.cache.CachedRun

attribute), 101
cached_outputs (ksconf.builder.cache.CachedRun

attribute), 101
CachedRun (class in ksconf.builder.cache), 101
calc_regex_flags()

(ksconf.filter.FilteredListRegex method),
125

cdata_tags() (ksconf.xmlformat.SplunkSimpleXmlFormatter
static method), 129

CheckCmd (class in ksconf.commands.check), 105
clean_build() (in module ksconf.builder.steps),

104
cleanup() (ksconf.package.AppPackager

method), 127
close() (ksconf.commands.ConfFileProxy

139

KSConf Documentation, Release 0.8.1

method), 114
cmd (ksconf.vc.git.GitCmdOutput attribute), 123
cmp_sets() (in module ksconf.util.compare), 121
color() (ksconf.util.terminal.TermColor

method), 122
combine() (ksconf.package.AppPackager

method), 128
combine_stanza() (ksconf.commands.promote.PromoteCmd

static method), 109
CombineCmd (class in ksconf.commands.combine),

105
compare_cfgs() (in module ksconf.conf.delta),

116
compare_stanzas() (in module

ksconf.conf.delta), 117
conf_attr_boolean() (in module

ksconf.conf.parser), 119
ConfDirProxy (class in ksconf.commands), 113
ConfFileProxy (class in ksconf.commands), 114
ConfFileType (class in ksconf.commands), 114
config (ksconf.builder.BuildStep attribute), 104
config (ksconf.layer.LayerRootBase.Layer at-

tribute), 127
config_file (ksconf.builder.cache.CachedRun at-

tribute), 101
ConfParserException, 119
ConfSnapshot (class in

ksconf.commands.snapshot), 111
ConfSnapshotConfig (class in

ksconf.commands.snapshot), 111
connect_splunkd()

(ksconf.commands.restpublish.RestPublishCmd
method), 110

cont_handler() (in module ksconf.conf.parser),
119

convert_filename()
(ksconf.xmlformat.FileReadlinesCache
static method), 129

copy_all() (ksconf.builder.cache.FileSet method),
102

copy_files() (in module ksconf.builder.steps),
104

create_filtered_list() (in module
ksconf.filter), 125

CurlCommand (class in
ksconf.commands.restexport), 110

D
data (ksconf.commands.ConfFileProxy attribute),

114
data (ksconf.conf.meta.MetaLayer attribute), 118
debug() (in module ksconf.setup_entrypoints),

129
debug_traceback() (in module ksconf.util), 123
dedent() (in module ksconf.commands), 115
default_blocklist

(ksconf.commands.package.PackageCmd
attribute), 108

default_cli() (in module ksconf.builder), 105
delete_conf() (ksconf.commands.restpublish.RestPublishCmd

method), 110
description (ksconf.commands.check.CheckCmd

attribute), 105
description (ksconf.commands.combine.CombineCmd

attribute), 106
description (ksconf.commands.diff.DiffCmd at-

tribute), 106
description (ksconf.commands.filter.FilterCmd

attribute), 107
description (ksconf.commands.KsconfCmd at-

tribute), 113
description (ksconf.commands.merge.MergeCmd

attribute), 107
description (ksconf.commands.minimize.MinimizeCmd

attribute), 108
description (ksconf.commands.package.PackageCmd

attribute), 108
description (ksconf.commands.promote.PromoteCmd

attribute), 109
description (ksconf.commands.restexport.RestExportCmd

attribute), 110
description (ksconf.commands.restpublish.RestPublishCmd

attribute), 110
description (ksconf.commands.snapshot.SnapshotCmd

attribute), 111
description (ksconf.commands.sort.SortCmd at-

tribute), 112
description (ksconf.commands.unarchive.UnarchiveCmd

attribute), 112
description (ksconf.commands.xmlformat.XmlFormatCmd

attribute), 113
detect_by_bom() (in module ksconf.conf.parser),

119
detect_mtime() (ksconf.conf.delta.DiffHeader

140 Index

KSConf Documentation, Release 0.8.1

method), 115
DiffCmd (class in ksconf.commands.diff), 106
DiffGlobal (class in ksconf.conf.delta), 115
DiffHeader (class in ksconf.conf.delta), 115
DiffOp (class in ksconf.conf.delta), 115
DiffStanza (class in ksconf.conf.delta), 116
DiffStzKey (class in ksconf.conf.delta), 116
dir_exists() (in module ksconf.util.file), 122
DirectLayerRoot (class in ksconf.layer), 125
DirectoriesCompleter() (in module

ksconf.util.completers), 122
disable() (ksconf.builder.cache.CachedRun

method), 101
disable_cache() (ksconf.builder.core.BuildManager

method), 103
dist_path (ksconf.builder.BuildStep attribute),

104
DotDLayerRoot (class in ksconf.layer), 125
DotDLayerRoot.Layer (class in ksconf.layer), 126
dump() (ksconf.builder.cache.CachedRun method),

101
dump() (ksconf.commands.ConfFileProxy

method), 114
DuplicateKeyException, 119
DuplicateStanzaException, 119

E
empty_dict() (in module

ksconf.commands.promote), 109
Ep (class in ksconf.setup_entrypoints), 129
evaluate() (ksconf.layer.LayerFilter method),

126
exists (ksconf.builder.cache.CachedRun at-

tribute), 101
exists() (ksconf.commands.ConfFileProxy

method), 114
expand() (ksconf.package.AppVarMagic method),

128
expand_glob_list() (in module ksconf.util.file),

122
expand_layers() (ksconf.conf.meta.MetaData

static method), 118
expand_tags() (ksconf.xmlformat.SplunkSimpleXmlFormatter

class method), 129
explode_default_stanza() (in module

ksconf.commands.minimize), 108
extend_args() (ksconf.commands.restexport.CurlCommand

method), 110

extract_archive() (in module ksconf.archive),
124

F
feed() (ksconf.filter.FilteredList method), 125
feed_conf() (ksconf.conf.meta.MetaData

method), 118
feed_file() (ksconf.conf.meta.MetaData

method), 118
feedall() (ksconf.filter.FilteredList method), 125
file_compare() (in module ksconf.util.compare),

121
file_fingerprint() (in module ksconf.util.file),

122
file_hash() (in module ksconf.util.file), 122
fileobj_compare() (in module

ksconf.util.compare), 121
FileReadlinesCache (class in ksconf.xmlformat),

129
files (ksconf.builder.cache.FileSet attribute), 102
files_meta (ksconf.builder.cache.FileSet at-

tribute), 102
FilesCompleter() (in module

ksconf.util.completers), 122
FileSet (class in ksconf.builder.cache), 102
filter_attrs() (ksconf.commands.filter.FilterCmd

method), 107
FilterCmd (class in ksconf.commands.filter), 107
FilteredList (class in ksconf.filter), 125
FilteredListRegex (class in ksconf.filter), 125
FilteredListString (class in ksconf.filter), 125
FilterListWildcard (class in ksconf.filter), 125
find_conf_in_layers() (in module

ksconf.package), 128
format (ksconf.commands.combine.CombineCmd

attribute), 106
format (ksconf.commands.diff.DiffCmd attribute),

106
format (ksconf.commands.KsconfCmd attribute),

113
format (ksconf.commands.promote.PromoteCmd

attribute), 109
format (ksconf.commands.restexport.RestExportCmd

attribute), 110
format (ksconf.commands.sort.SortCmd at-

tribute), 112
format (ksconf.commands.unarchive.UnarchiveCmd

attribute), 112

Index 141

KSConf Documentation, Release 0.8.1

format_xml() (ksconf.xmlformat.SplunkSimpleXmlFormatter
class method), 129

from_cache() (ksconf.builder.cache.FileSet class
method), 102

from_filesystem() (ksconf.builder.cache.FileSet
class method), 102

G
gaf_filter_name_like() (in module

ksconf.archive), 124
gen_arch_file_remapper() (in module

ksconf.archive), 124
GenArchFile (in module ksconf.archive), 124
get() (ksconf.conf.meta.MetaData method), 118
get_all_ksconf_cmds() (in module

ksconf.commands), 115
get_build() (ksconf.package.AppVarMagic

method), 128
get_build_step() (ksconf.builder.core.BuildManager

method), 103
get_cache_info() (ksconf.builder.core.BuildManager

method), 103
get_command() (ksconf.commands.restexport.CurlCommand

method), 110
get_entrypoints (in module ksconf.commands),

115
get_entrypoints_fallback() (in module

ksconf.setup_entrypoints), 129
get_entrypoints_setup() (in module

ksconf.setup_entrypoints), 129
get_file() (ksconf.commands.ConfDirProxy

method), 114
get_file() (ksconf.layer.LayerRootBase method),

127
get_file() (ksconf.layer.LayerRootBase.Layer

method), 127
get_fingerprint() (ksconf.builder.cache.FileSet

static method), 102
get_git_head() (ksconf.package.AppVarMagic

method), 128
get_git_last_rev()

(ksconf.package.AppVarMagic method),
128

get_git_tag() (ksconf.package.AppVarMagic
method), 128

get_layer() (ksconf.conf.meta.MetaData
method), 118

get_logger() (ksconf.builder.BuildStep method),
104

get_merged_conf() (in module ksconf.package),
128

get_path_layers() (ksconf.layer.LayerRootBase
method), 127

get_version() (ksconf.package.AppVarMagic
method), 128

git_cmd() (in module ksconf.vc.git), 124
git_cmd_iterable() (in module ksconf.vc.git),

124
git_is_clean() (in module ksconf.vc.git), 124
git_is_working_tree() (in module

ksconf.vc.git), 124
git_ls_files() (in module ksconf.vc.git), 124
git_single_line()

(ksconf.package.AppVarMagic method),
128

git_status_summary() (in module ksconf.vc.git),
124

git_status_ui() (in module ksconf.vc.git), 124
git_version (in module ksconf.vc.git), 124
GitCmdOutput (class in ksconf.vc.git), 123
GitNotAvailable, 124
guess_indent() (ksconf.xmlformat.SplunkSimpleXmlFormatter

static method), 130

H
handle_conf_file()

(ksconf.commands.restpublish.RestPublishCmd
method), 110

handle_py3_kw_only_args() (in module
ksconf.util), 123

has_rules (ksconf.filter.FilteredList attribute),
125

help (ksconf.commands.check.CheckCmd at-
tribute), 105

help (ksconf.commands.combine.CombineCmd
attribute), 106

help (ksconf.commands.diff.DiffCmd attribute),
106

help (ksconf.commands.filter.FilterCmd at-
tribute), 107

help (ksconf.commands.KsconfCmd attribute),
113

help (ksconf.commands.merge.MergeCmd at-
tribute), 107

142 Index

KSConf Documentation, Release 0.8.1

help (ksconf.commands.minimize.MinimizeCmd
attribute), 108

help (ksconf.commands.package.PackageCmd at-
tribute), 108

help (ksconf.commands.promote.PromoteCmd at-
tribute), 109

help (ksconf.commands.restexport.RestExportCmd
attribute), 110

help (ksconf.commands.restpublish.RestPublishCmd
attribute), 110

help (ksconf.commands.snapshot.SnapshotCmd
attribute), 111

help (ksconf.commands.sort.SortCmd attribute),
112

help (ksconf.commands.unarchive.UnarchiveCmd
attribute), 112

help (ksconf.commands.xmlformat.XmlFormatCmd
attribute), 113

I
IGNORECASE (ksconf.filter.FilteredList attribute),

125
indent_tree() (ksconf.xmlformat.SplunkSimpleXmlFormatter

class method), 130
inject_section_comments() (in module

ksconf.conf.parser), 119
inputs_identical()

(ksconf.builder.cache.CachedRun
method), 102

INVERT (ksconf.filter.FilteredList attribute), 125
is_disabled (ksconf.builder.cache.CachedRun at-

tribute), 102
is_equal() (in module ksconf.conf.delta), 117
is_expired (ksconf.builder.cache.CachedRun at-

tribute), 102
is_file() (ksconf.commands.ConfFileProxy

method), 114
is_folders_set() (ksconf.builder.core.BuildManager

method), 103
is_new (ksconf.builder.cache.CachedRun at-

tribute), 102
is_quiet (ksconf.builder.BuildStep attribute),

104
is_verbose() (ksconf.builder.BuildStep method),

104
items() (ksconf.conf.meta.MetaLayer method),

118

iter_raw() (ksconf.conf.meta.MetaData
method), 118

K
keep_tags (ksconf.xmlformat.SplunkSimpleXmlFormatter

attribute), 130
key (ksconf.conf.delta.DiffStzKey attribute), 116
keys() (ksconf.conf.parser.update_conf method),

121
ksconf (module), 130
ksconf.archive (module), 124
ksconf.builder (module), 104
ksconf.builder.cache (module), 101
ksconf.builder.core (module), 102
ksconf.builder.steps (module), 104
ksconf.commands (module), 113
ksconf.commands.check (module), 105
ksconf.commands.combine (module), 105
ksconf.commands.diff (module), 106
ksconf.commands.filter (module), 106
ksconf.commands.merge (module), 107
ksconf.commands.minimize (module), 107
ksconf.commands.package (module), 108
ksconf.commands.promote (module), 109
ksconf.commands.restexport (module), 109
ksconf.commands.restpublish (module), 110
ksconf.commands.snapshot (module), 111
ksconf.commands.sort (module), 111
ksconf.commands.unarchive (module), 112
ksconf.commands.xmlformat (module), 112
ksconf.conf (module), 121
ksconf.conf.delta (module), 115
ksconf.conf.merge (module), 117
ksconf.conf.meta (module), 117
ksconf.conf.parser (module), 118
ksconf.consts (module), 124
ksconf.filter (module), 125
ksconf.layer (module), 125
ksconf.package (module), 127
ksconf.setup_entrypoints (module), 128
ksconf.util (module), 123
ksconf.util.compare (module), 121
ksconf.util.completers (module), 122
ksconf.util.file (module), 122
ksconf.util.rest (module), 122
ksconf.util.terminal (module), 122
ksconf.vc (module), 124
ksconf.vc.git (module), 123

Index 143

KSConf Documentation, Release 0.8.1

ksconf.xmlformat (module), 129
KsconfCmd (class in ksconf.commands), 113
KsconfPluginWarning, 130

L
launch() (ksconf.commands.KsconfCmd method),

113
layer (ksconf.layer.LayerRootBase.File attribute),

126
layer_regex (ksconf.layer.DotDLayerRoot at-

tribute), 126
LayerConfig (class in ksconf.layer), 126
LayerException, 126
LayerFilter (class in ksconf.layer), 126
LayerRootBase (class in ksconf.layer), 126
LayerRootBase.File (class in ksconf.layer), 126
LayerRootBase.Layer (class in ksconf.layer), 126
LayerUsageException, 127
lines (ksconf.vc.git.GitCmdOutput attribute),

123
list_files() (ksconf.layer.LayerRootBase

method), 127
list_files() (ksconf.layer.LayerRootBase.Layer

method), 127
list_layer_names() (ksconf.layer.LayerRootBase

method), 127
list_layers() (ksconf.layer.DotDLayerRoot

method), 126
list_layers() (ksconf.layer.LayerRootBase

method), 127
list_vars() (ksconf.package.AppVarMagic

method), 128
Literal (class in ksconf.commands.restexport),

110
load() (ksconf.builder.cache.CachedRun method),

102
load() (ksconf.commands.ConfFileProxy

method), 114
load() (ksconf.setup_entrypoints.LocalEntryPoint

method), 129
load_blocklist() (ksconf.commands.package.PackageCmd

static method), 108
LocalEntryPoint (class in

ksconf.setup_entrypoints), 129
location (ksconf.conf.delta.DiffOp attribute),

116
logical_path (ksconf.layer.LayerRootBase.File

attribute), 126

logical_path (ksconf.layer.LayerRootBase.Layer
attribute), 127

M
make_archive() (ksconf.package.AppPackager

method), 128
make_boolean() (ksconf.commands.restpublish.RestPublishCmd

static method), 110
match() (ksconf.filter.FilteredList method), 125
match_bwlist() (in module ksconf.util.file), 122
maturity (ksconf.commands.check.CheckCmd at-

tribute), 105
maturity (ksconf.commands.combine.CombineCmd

attribute), 106
maturity (ksconf.commands.diff.DiffCmd at-

tribute), 106
maturity (ksconf.commands.filter.FilterCmd at-

tribute), 107
maturity (ksconf.commands.KsconfCmd at-

tribute), 113
maturity (ksconf.commands.merge.MergeCmd at-

tribute), 107
maturity (ksconf.commands.minimize.MinimizeCmd

attribute), 108
maturity (ksconf.commands.package.PackageCmd

attribute), 109
maturity (ksconf.commands.promote.PromoteCmd

attribute), 109
maturity (ksconf.commands.restexport.RestExportCmd

attribute), 110
maturity (ksconf.commands.restpublish.RestPublishCmd

attribute), 110
maturity (ksconf.commands.sort.SortCmd at-

tribute), 112
maturity (ksconf.commands.unarchive.UnarchiveCmd

attribute), 112
maturity (ksconf.commands.xmlformat.XmlFormatCmd

attribute), 113
max_file_size (ksconf.commands.snapshot.ConfSnapshotConfig

attribute), 111
merge_app_local() (in module

ksconf.conf.merge), 117
merge_conf_dicts() (in module

ksconf.conf.merge), 117
merge_conf_files() (in module

ksconf.conf.merge), 117
merge_local() (ksconf.package.AppPackager

method), 128

144 Index

KSConf Documentation, Release 0.8.1

merge_update_any_file() (in module
ksconf.conf.merge), 117

merge_update_conf_file() (in module
ksconf.conf.merge), 117

MergeCmd (class in ksconf.commands.merge), 107
MetaData (class in ksconf.conf.meta), 118
MetaLayer (class in ksconf.conf.meta), 118
MinimizeCmd (class in

ksconf.commands.minimize), 108
module_name (ksconf.setup_entrypoints.Ep at-

tribute), 129
mount_regex (ksconf.layer.DotDLayerRoot at-

tribute), 126
mtime (ksconf.layer.LayerRootBase.File attribute),

126

N
name (ksconf.layer.LayerRootBase.Layer at-

tribute), 127
name (ksconf.setup_entrypoints.Ep attribute), 129

O
object_name (ksconf.setup_entrypoints.Ep at-

tribute), 129
order_layers() (ksconf.layer.DirectLayerRoot

method), 125
order_layers() (ksconf.layer.DotDLayerRoot

method), 126
order_layers() (ksconf.layer.LayerRootBase

method), 127
output() (ksconf.commands.filter.FilterCmd

method), 107

P
PackageCmd (class in ksconf.commands.package),

108
parse_conf() (in module ksconf.conf.parser), 119
parse_conf() (ksconf.commands.KsconfCmd

method), 113
parse_conf_stream() (in module

ksconf.conf.parser), 120
parse_meta() (ksconf.conf.meta.MetaData class

method), 118
path_in_layer() (in module ksconf.layer), 127
pathlib_compat() (in module ksconf.util.file),

122
physical_path (ksconf.layer.LayerRootBase.File

attribute), 126

physical_path (ksconf.layer.LayerRootBase.Layer
attribute), 127

pip_install() (in module ksconf.builder.steps),
104

post_run() (ksconf.commands.KsconfCmd
method), 113

pre_run() (ksconf.commands.check.CheckCmd
method), 105

pre_run() (ksconf.commands.KsconfCmd
method), 113

pre_run() (ksconf.commands.package.PackageCmd
method), 109

pre_run() (ksconf.commands.sort.SortCmd
method), 112

prep_filters() (ksconf.commands.filter.FilterCmd
method), 107

prep_filters() (ksconf.commands.promote.PromoteCmd
method), 109

PromoteCmd (class in ksconf.commands.promote),
109

prune_points (ksconf.layer.DotDLayerRoot.Layer
attribute), 126

publish_conf() (ksconf.commands.restpublish.RestPublishCmd
method), 111

Q
quote() (ksconf.commands.restexport.CurlCommand

class method), 110

R
readable() (ksconf.commands.ConfFileProxy

method), 114
readlines() (ksconf.xmlformat.FileReadlinesCache

method), 129
reduce_stanza() (in module ksconf.conf.delta),

117
regex_access (ksconf.conf.meta.MetaData at-

tribute), 118
register_args() (ksconf.commands.check.CheckCmd

method), 105
register_args() (ksconf.commands.combine.CombineCmd

method), 106
register_args() (ksconf.commands.diff.DiffCmd

method), 106
register_args() (ksconf.commands.filter.FilterCmd

method), 107
register_args() (ksconf.commands.KsconfCmd

method), 113

Index 145

KSConf Documentation, Release 0.8.1

register_args() (ksconf.commands.merge.MergeCmd
method), 107

register_args() (ksconf.commands.minimize.MinimizeCmd
method), 108

register_args() (ksconf.commands.package.PackageCmd
method), 109

register_args() (ksconf.commands.promote.PromoteCmd
method), 109

register_args() (ksconf.commands.restexport.RestExportCmd
method), 110

register_args() (ksconf.commands.restpublish.RestPublishCmd
method), 111

register_args() (ksconf.commands.snapshot.SnapshotCmd
method), 111

register_args() (ksconf.commands.sort.SortCmd
method), 112

register_args() (ksconf.commands.unarchive.UnarchiveCmd
method), 112

register_args() (ksconf.commands.xmlformat.XmlFormatCmd
method), 113

relative_path (ksconf.layer.LayerRootBase.File
attribute), 126

ReluctantWriter (class in ksconf.util.file), 122
relwalk() (in module ksconf.util.file), 122
rename() (ksconf.builder.cache.CachedRun

method), 102
reset() (ksconf.commands.ConfFileProxy

method), 114
reset() (ksconf.util.terminal.TermColor

method), 123
reset_counters() (ksconf.filter.FilteredList

method), 125
reset_counters() (ksconf.filter.FilteredListRegex

method), 125
reset_counters() (ksconf.filter.FilteredListString

method), 125
resolve() (ksconf.conf.meta.MetaLayer method),

118
RestExportCmd (class in

ksconf.commands.restexport), 110
RestPublishCmd (class in

ksconf.commands.restpublish), 110
returncode (ksconf.vc.git.GitCmdOutput at-

tribute), 124
root (ksconf.builder.cache.CachedRun attribute),

102
root (ksconf.layer.LayerRootBase.Layer at-

tribute), 127

run() (ksconf.builder.BuildStep method), 104
run() (ksconf.commands.check.CheckCmd

method), 105
run() (ksconf.commands.combine.CombineCmd

method), 106
run() (ksconf.commands.diff.DiffCmd method),

106
run() (ksconf.commands.filter.FilterCmd

method), 107
run() (ksconf.commands.KsconfCmd method),

113
run() (ksconf.commands.merge.MergeCmd

method), 107
run() (ksconf.commands.minimize.MinimizeCmd

method), 108
run() (ksconf.commands.package.PackageCmd

method), 109
run() (ksconf.commands.promote.PromoteCmd

method), 109
run() (ksconf.commands.restexport.RestExportCmd

method), 110
run() (ksconf.commands.restpublish.RestPublishCmd

method), 111
run() (ksconf.commands.snapshot.SnapshotCmd

method), 111
run() (ksconf.commands.sort.SortCmd method),

112
run() (ksconf.commands.unarchive.UnarchiveCmd

method), 112
run() (ksconf.commands.xmlformat.XmlFormatCmd

method), 113

S
sanity_checker() (in module ksconf.archive),

124
schema_version (ksconf.commands.snapshot.ConfSnapshot

attribute), 111
section_reader() (in module

ksconf.conf.parser), 120
set_cache_info() (ksconf.builder.cache.CachedRun

method), 102
set_folders() (ksconf.builder.core.BuildManager

method), 103
set_parser_option()

(ksconf.commands.ConfFileProxy
method), 114

set_root() (ksconf.layer.DotDLayerRoot
method), 126

146 Index

KSConf Documentation, Release 0.8.1

set_settings() (ksconf.builder.cache.CachedRun
method), 102

show_diff() (in module ksconf.conf.delta), 117
show_text_diff() (in module ksconf.conf.delta),

117
size (ksconf.layer.LayerRootBase.File attribute),

126
smart_copy() (in module ksconf.util.file), 122
smart_write_conf() (in module

ksconf.conf.parser), 120
snapshot_dir() (ksconf.commands.snapshot.ConfSnapshot

method), 111
snapshot_file_conf()

(ksconf.commands.snapshot.ConfSnapshot
method), 111

SnapshotCmd (class in
ksconf.commands.snapshot), 111

SortCmd (class in ksconf.commands.sort), 112
source_path (ksconf.builder.BuildStep attribute),

104
splitup_kvpairs() (in module

ksconf.conf.parser), 120
SplunkSimpleXmlFormatter (class in

ksconf.xmlformat), 129
stanza (ksconf.conf.delta.DiffStanza attribute),

116
stanza (ksconf.conf.delta.DiffStzKey attribute),

116
STATE_DISABLED (ksconf.builder.cache.CachedRun

attribute), 101
STATE_EXISTS (ksconf.builder.cache.CachedRun

attribute), 101
STATE_NEW (ksconf.builder.cache.CachedRun at-

tribute), 101
STATE_TAINT (ksconf.builder.cache.CachedRun at-

tribute), 101
stderr (ksconf.vc.git.GitCmdOutput attribute),

124
stdout (ksconf.vc.git.GitCmdOutput attribute),

124
stream (ksconf.commands.ConfFileProxy at-

tribute), 114
summarize_cfg_diffs() (in module

ksconf.conf.delta), 117

T
tag (ksconf.conf.delta.DiffOp attribute), 116

taint() (ksconf.builder.cache.CachedRun
method), 102

taint_cache() (ksconf.builder.core.BuildManager
method), 103

TermColor (class in ksconf.util.terminal), 122
Token (class in ksconf.conf.parser), 119
tty_color() (in module ksconf.util.terminal),

123
type (ksconf.conf.delta.DiffGlobal attribute), 115
type (ksconf.conf.delta.DiffStanza attribute), 116
type (ksconf.conf.delta.DiffStzKey attribute), 116

U
UnarchiveCmd (class in

ksconf.commands.unarchive), 112
unlink() (ksconf.commands.ConfFileProxy

method), 114
update() (ksconf.conf.meta.MetaLayer method),

118
update() (ksconf.conf.parser.update_conf

method), 121
update_app_conf()

(ksconf.package.AppPackager method),
128

update_conf (class in ksconf.conf.parser), 120

V
VERBOSE (ksconf.filter.FilteredList attribute), 125
verbosity (ksconf.builder.BuildStep attribute),

105
version_extra (ksconf.commands.KsconfCmd at-

tribute), 113

W
walk() (ksconf.conf.meta.MetaData method), 118
walk() (ksconf.conf.meta.MetaLayer method),

118
walk() (ksconf.layer.DotDLayerRoot.Layer

method), 126
walk() (ksconf.layer.LayerRootBase.Layer

method), 127
writable() (ksconf.commands.ConfFileProxy

method), 114
write() (ksconf.util.terminal.TermColor

method), 123
write_conf() (in module ksconf.conf.parser), 121
write_conf_stream() (in module

ksconf.conf.parser), 121

Index 147

KSConf Documentation, Release 0.8.1

write_snapshot() (ksconf.commands.snapshot.ConfSnapshot
method), 111

write_stream() (ksconf.conf.meta.MetaData
method), 118

X
XmlFormatCmd (class in

ksconf.commands.xmlformat), 113

148 Index

	Welcome to KSCONF!
	Install
	User Guide
	Introduction
	Concepts
	Installation Guide
	Commands
	Cheat Sheet
	Contributing
	Developer setup
	Git tips & tricks
	Random
	Contact
	Command line reference
	Changelog
	Known issues
	Advanced Installation Guide
	License
	API Reference

	Indices and tables
	Bibliography
	Python Module Index
	Index

