

Kintyre’s Splunk CONFiguration tool

[image: Ksconf logo]

	Author

	Lowell Alleman (Kintyre)

	Version

	0.7

Welcome to KSCONF!

KSCONF in a modular command line tool for Splunk admins and app developers.
It’s quick and easy to get started with basic commands and grow into the more advanced commands as needed.
Thanks for checking out out expanding body of documentation to help smooth your transition to a better-manged Splunk
environment, or explore ways to integrate ksconf capabilities into your existing workflow.

No matter where you’re starting from, we think ksconf can help! We’re glad your here. Let us
know if there’s anything we can do to help along your journey.

– Kintyre team

Install

Ksconf can be directly installed as a Python (via pip) or as a Splunk app. The Splunk app option is often easier.

To install as a python package, run the following:

pip install kintyre-splunk-conf

To install the Splunk app, download the latest KSCONF App for Splunk [https://splunkbase.splunk.com/app/4383/] release. Note that a
one-time registration command is need to make ksconf executable:

splunk cmd python $SPLUNK_HOME/etc/apps/ksconf/bin/install.py

User Guide

Contents

	Introduction
	Design principles

	Common uses for ksconf

	Getting started

	Concepts
	Configuration layers

	Minimizing files

	Installation Guide
	Overview

	Requirements

	Install Splunk App

	Install Python package

	Install from GIT

	Validate the install

	Command line completion

	Commands

	Cheat Sheet
	General purpose

	Cleaning up

	Advanced usage

	Putting it all together

	Contributing
	Pre-commit hook

	Refresh module listing

	Create a new subcommand

	Developer setup
	Tools

	Install ksconf

	Building the docs

	Git tips & tricks
	Pre-commit hooks

	Git configuration tweaks

	Random
	Typographic and Convention

	How Splunk writes to conf files

	Grandfather Paradox

	Contact

Reference

	Command line reference

	Changelog

	Known issues

	Advanced Installation Guide

	License

	API Reference

Indices and tables

	Index

	Module Index

	Search Page

Introduction

ksconf
is a command-line tool that helps administrators and developers manage their Splunk environments by
enhancing their ability to control configuration files. By design, the interface is modular so that
each function (aka subcommand) can be learned quickly and used independently. Most Ksconf commands
are simple enough for a quick one-off job, yet reliable enough to integrate into complex app build
and deployment workflow.

Ksconf helps manage the nuances with storing Splunk apps in a version control system, like git. It
also supports pointing live Splunk apps to a working tree, merging changes from the live system’s
(local) folder to the version controlled folder (often ‘default’), and in more complex cases, it
deals with more than one layer of “default”, which Splunk can’t handle
natively).

Note

What KSCONF is not

Ksconf does not replace your existing Splunk deployment mechanisms or version control tools.
The goal is to complement and extend, not replace, the workflow that works for you.

Design principles

	Ksconf is a toolbox.

	Each tool has a specific purpose and function that works independently.
Borrowing from the Unix philosophy, each command should do one thing well and be easily combined
to handle higher-order tasks.

	When possible, be familiar.

	Various commands borrow from popular UNIX command line tools such as grep and
diff. The modular nature of the command and other design features were borrowed from
git and splunk as well.

	Don’t impose workflow.

	Ksconf works with or without version control and independently of your deployment mechanisms.
If you are looking to implement these things, ksconf is a great building block.

	Embrace automated testing.

	It’s impractical to check every scenarios between each release, but significant work has gone
into unit testing the CLI to avoid breakage.

Common uses for ksconf

	Promote changes from local to default

	Maintain multiple independent layers of configurations

	Reduce duplicate settings in a local file

	Upgrade apps stored in version control

	Merge or separate configuration files

	Git pre-commit hook for validation

	Git post-checkout hook for workflow automation

	Send .conf stanzas to a REST endpoint (Splunk Cloud or no file system access)

Getting started

You’re already in the right place. If you’re completely new, try checking out of these first:

	Cheat Sheet - Like jumping in the deep end, or prefer examples of descriptions? Start here.

	Concepts - To get a more theoretical background on why these things matter.

	Commands - Start here if you’d like a more thorough introduction.

Concepts

Configuration layers

The idea of configuration layers is shared across multiple actions in ksconf.
Specifically, combine is used to merge multiple layers, and the
unarchive command can be used to install or upgrade an app in a
layer-aware way.

What’s the problem?

In a typical enterprise deployment of Splunk, a single app can easily have multiple logical sources
of configuration:

	Upstream app developer (typically via Splunkbase)

	Local developer app-developer adds organization-specific customizations or fixes

	Splunk admin tweaks the inappropriate indexes.conf settings, and

	Custom knowledge objects added by your subject matter experts.

Ideally we’d like to version control these, but doing so is complicated because normally you have to
manage all 4 of these logical layers in one ‘default’ folder.

Note

Isn’t that what the local folder is for?

Splunk requires that app settings be located either in default or local;
and managing local files with version control leads to merge conflicts;
so effectively, all version controlled settings need to be in default,
or risk merge conflicts, However, making changes to the default folder causes
issues when you attempt to upgrade an app upstream. See how this is a catch-22?

Let’s suppose a new upstream version is released.
If you aren’t managing layers independently, then you have to manually upgrade the app being careful to preserve all custom configurations.
Compare this to the solution provided by the combine functionality.
The layered approach provide an advantage because logical sources can be stored separately in their own directories thus allowing them to be modified independently.
Using this approach, changes in the “upstream” layer will only ever be from an official release, and the organizational layer will only ever contain customizations made by your organization.
Practically, this means it’s no longer necessary to comb through commit logs identifying which custom changes need to be preserved and reapplied.

While this doesn’t completely remove the need for a human to review app upgrades, it does lower the
overhead enough that updates can be pulled in more frequently, thus minimizing divergence.

Minimizing files

A typical scenario:

To customize a Splunk app or add-on, many admins simply copy the conf file from default to local and then apply changes to the local one.
That’s a common practice, but stopping there complicates future upgrades.
The next step should be to clean up the local file, deleting all the unmodified entries that were copied from default.

Why does this matter?

If you’ve copied a default file into the local folder, this means that local file doesn’t contain just your settings, it contains all copy of all of default settings too.
So in the future, fixes published by the app creator are likely to be masked by your local settings.
A better approach is to reduce the local conf file leaving only the stanzas and settings that you intended to change.
While this is a pain to do by hand, it’s quite easily accomplished by ksconf minimize.
This make your conf files easier to read and makes upgrades easier, and it’s now easy to do.

What does Splunk have to say about this? (From the docs)

“When you first create this new version of the file, start with an empty file and add only
the attributes that you need to change. Do not start from a copy of the default directory. If you
copy the entire default file to a location with higher precedence, any changes to the default
values that occur through future Splunk Enterprise upgrades cannot take effect, because the
values in the copied file will override the updated values in the default file.” – [SPLKDOC1]

Tip

It’s a good practice to minimize your files right away.
If you wait, it may not be obvious what specific version of default that local was copied from.
In other words, if you run the minimize command after you’ve upgraded the default folder, you may need to do extra work to manually reconcile upgrade differences.
Because any changes made between the initial version of the default file and the most recently release of the conf file cannot be automatically addressed in this fashion.

If your files are all in git, and you know a REF of the previous version of your default file, you can use some commands like this:

Review the output of the log, and find the revision of the last change
git log --oneline -- default/inputs.conf

Assuming "e633e6" was identified as the desired baseline ref, based on the 'log' output

Compare what's changed in the 'inputs.conf' file between releases (FYI only)
ksconf diff <(git show e633e6:./default/inputs.conf) default/inputs.conf

Now apply the 'minimization' based on the original version of inputs.conf
ksconf minimize --target=local/inputs.conf <(git show e633e6:./default/inputs.conf)

As always, be sure to double check the results.

	SPLKDOC1

	https://docs.splunk.com/Documentation/Splunk/7.2.3/Admin/Configurationfiledirectories

Installation Guide

KSCONF can be installed either as a Splunk app or a Python package. Picking the option that’s right
for you is typically fairly easy.

Unless you have experience with Python packaging or are planning on customizing or extending ksconf then the Splunk app is likely the best place for you to start.
The native Python package works well for many developer-centric scenarios, but installation ends up being complicated for the more typical admin-centric use-case.
Therefore, most users will find it easier to start with the Splunk app.

Note

The introduction of a Splunk app is a fairly new situation (as of the 0.6.x release.)
Originally we resisted this idea, since ksconf was designed to manage other apps, not live
within one. But ultimately, the packaging decision was driven by the bombardment of complexity
encountered with nearly every install. Python packaging is a mess and daunting for the
uninitiated.

Overview

	Install

	Advantages

	Potential pitfalls

	Python
package

	
	Most ‘pure’ and flexible install

	One command install. (ideal)

	Easy upgrades

	More extendable (plugins)

	Install Python package

	
	Lots of potential variations and pitfalls

	Many Linux distro’s don’t ship with pip

	Must consider/coordinate installation user.

	Often requires some admin access.

	Too many install options (complexity)

	Splunk
app

	
	Quick installation (single download)

	Requires one time bootstrap command

	Self contained; no admin access require

	Fast demo; fight with pip later

	Install Splunk App

	
	Crippled Python install (no pip)

	Can’t add custom extensions (entrypoints)

	No CLI completion (yet)

	Grandfather Paradox

	Offline
package

	
	Security: strict review and change control

	Advanced Installation Guide.

	
	Requires many steps.

	Inherits ‘Python package’ pitfalls.

Requirements

Python package install:

	Python [https://www.python.org/downloads/] Supports Python 2.7, 3.4+

	PIP [https://pip.pypa.io/en/stable/installing/] (strongly recommended)

	Tested on Mac, Linux, and Windows

Splunk app install:

	Splunk 6.0 or greater is installed

Install Splunk App

Download and install the KSCONF App for Splunk [https://splunkbase.splunk.com/app/4383/]. Then open a shell, switch to the Splunk user
account and run this one-time bootstrap command.

splunk cmd python $SPLUNK_HOME/etc/apps/ksconf/bin/install.py

On Windows, open a terminal as Administrator and type:

cd "C:\Program Files\Splunk"
bin\splunk.exe cmd python etc\apps\ksconf\bin\install.py

This will add ksconf to Splunk’s bin folder, thus making it executable either as ksconf
or worse case splunk cmd ksconf. (If you can run splunk without giving it a path, then
ksconf should work too.)

At some point we may add an option for you to do this setup step from the UI.

Note

Alternate download

You can also download the latest (and pre-release) SPL from the GitHub Releases [https://github.com/Kintyre/ksconf/releases] page.
Download the file named like ksconf-app_for_splunk-ver.tgz

Install Python package

Quick install

Using pip:

pip install kintyre-splunk-conf

System-level install: (For Mac/Linux)

curl https://bootstrap.pypa.io/get-pip.py | sudo python - kintyre-splunk-conf

Enable Bash completion

If you’re on a Mac or Linux, and would like to enable bash completion, run these commands:

pip install argcomplete
echo 'eval "$(register-python-argcomplete ksconf)"' >> ~/.bashrc

(Currently not available for Splunk APP installs; not because it can’t work, but because it’s not documented or
tested yet. Pull request welcome.)

Ran into issues?

If you run into any issues, then please dive into the Advanced Installation Guide. Much time and effort
was placed into compiling that information from all the scenarios we encountered, so please check it
out. You may want to start under the Troubleshooting.

Install from GIT

If you’d like to contribute to ksconf, or just build the latest and greatest, then install from the
git repository is a good choice. (Technically this is still installing with pip, so it’s easy
to switch between a PyPI install, and a local install.)

git clone https://github.com/Kintyre/ksconf.git
cd ksconf
pip install .

See Developer setup for additional details about contributing to ksconf.

Validate the install

No matter how you install ksconf, you can confirm that it’s working with the following command:

ksconf --version

The output should look something like this:

 #
 ##
 ### ## #### ###### ####### ### ## #######
 ### ## ### ### ## #### ##
 ##### ### ### ## ## ####### #######
 ### ## ### ### ## ## ### ### ##
 ### ## ##### ###### ##### ### ## ##
 #

ksconf 0.7.3 (Build 376)
Python: 2.7.15 (/Applications/splunk/bin/python)
Git SHA1 dc94f811 committed on 2019-06-05
Installed at: /Applications/splunk/etc/apps/ksconf/bin/lib/ksconf
Written by Lowell Alleman <lowell@kintyre.co>.
Copyright (c) 2019 Kintyre Solutions, Inc, all rights reserved.
Licensed under Apache Public License v2

 kintyre_splunk_conf (0.7.3)

 Commands:
 check (stable) OK
 combine (beta) OK
 diff (stable) OK
 filter (alpha) OK
 merge (stable) OK
 minimize (beta) OK
 promote (beta) OK
 rest-export (beta) OK
 rest-publish (alpha) OK (splunk-sdk 1.6.6)
 snapshot (alpha) OK
 sort (stable) OK
 unarchive (beta) OK
 xml-format (alpha) OK (lxml 4.2.5)

Missing 3rd party libraries

Note

Splunk app for KSCONF users don’t need to worry about this.

As of version 0.7.0, ksconf now includes commands that require external libraries.
But to keep the main package slim, these libraries aren’t strictly required unless you want the specific commands.
As part of this change, ksconf --version now reports any issues with individual commands in the 3rd column.
Any value other than ‘OK’ indicates a problem.
Here’s an example of the output if you’re missing the splunk-sdk package.

...
promote (beta) OK
rest-export (beta) OK
rest-publish (alpha) Missing 3rd party module: No module named splunklib.client
snapshot (alpha) OK
...

Note that the while the rest-publish command will not work example above, all of the other commands will continue to work fine.
If you don’t need rest-publish then there’s no need to do anything about it.
If you want the packages, install the “thirdparty” extras using following command:

pip install kintyre-splunk-conf[thirdparty]

Other issues

If you run into any issues, check out the Validate the install

Command line completion

Bash completion allows for a more intuitive interactive workflow by providing quick access to
command line options and file completions. Often this saves time since the user can avoid mistyping
file names or be reminded of which command line actions and arguments are available without
switching contexts. For example, if the user types ksconf d and hits Tab then the
ksconf diff is completed. Or if the user types ksconf and hits Tab twice, the full
list of command actions are listed.

This feature uses the argcomplete [https://argcomplete.readthedocs.io/en/latest/] Python package and supports Bash, zsh, tcsh.

Install via pip:

pip install argcomplete

Enabling command line completion for ksconf can be done in two ways. The easiest option is to enable
it for ksconf only. (However, it only works for the current user, it can break if the ksconf
command is referenced in a non-standard way.) The alternate option is to enable global command line
completion for all python scripts at once, which is preferable if you use argparse for many python tools.

Enable argcomplete for ksconf only:

Edit your bashrc script
vim ~.bashrc

Add the following line
eval "$(register-python-argcomplete ksconf)"

Restart you shell, or just reload by running
source ~/.bashrc

To enable argcomplete globally, run the command:

activate-global-python-argcomplete

This adds a new script to your the bash_completion.d folder, which can be used for all scripts and
all users, but it does add some minor overhead to each completion command request.

OS-specific notes:

	Mac OS X: The global registration option man not work due the old version of Bash shipped by
default. So either use the one-shot registration or install a later version of bash with
homebrew: brew install bash then. Switch to the newer bash by default with
chsh /usr/local/bin/bash.

	Windows: Argcomplete doesn’t work on windows Bash for GIT. See argcomplete issue 142 [https://github.com/kislyuk/argcomplete/issues/142] for more info. If you really want this,
use Linux subsystem for Windows instead.

Commands

The ksconf command documentation is provided in the following ways:

	A detailed listing of each sub-command is provided in this section.
This includes relevant background descriptions, typical use cases, examples, and discussion of
relevant topics. An expanded descriptions of CLI arguments and their usage is provided here.
If you’ve not used a particular command before, start here.

	The Command line reference provides a quick an convenient reference when
the command line is unavailable. The same information is available by typing ksconf <CMD> --help.
This is most helpful if you’re already familiar with a command, but need a quick refresher.

Warning

Apologies for the dust

The command docs are currently undergoing reorganization. We’re considering a topical layout
rather than a per-command layout. Feedback and technical writing / organization contributions
are highly welcomed.

Command Listing

	Command

	Maturity

	Description

	ksconf check

	stable

	Perform basic syntax and sanity checks on .conf files

	ksconf combine

	beta

	Combine configuration files across multiple source directories into a single destination directory. This allows for an arbitrary number of splunk configuration layers to coexist within a single app. Useful in both ongoing merge and one-time ad-hoc use.

	ksconf diff

	stable

	Compare settings differences between two .conf files ignoring spacing and sort order

	ksconf filter

	alpha

	A stanza-aware GREP tool for conf files

	ksconf merge

	stable

	Merge two or more .conf files

	ksconf minimize

	beta

	Minimize the target file by removing entries duplicated in the default conf(s)

	ksconf promote

	beta

	Promote .conf settings between layers using either either in batch mode (all changes) or interactive mode. Frequently this is used to promote conf changes made via the UI (stored in the local folder) to a version-controlled directory, often default.

	ksconf rest-export

	beta

	Export .conf settings as a curl script to apply to a Splunk instance later (via REST)

	ksconf rest-publish

	alpha

	Publish .conf settings to a live Splunk instance via REST

	ksconf snapshot

	alpha

	Snapshot .conf file directories into a JSON dump format

	ksconf sort

	stable

	Sort a Splunk .conf file creating a normalized format appropriate for version control

	ksconf unarchive

	beta

	Install or upgrade an existing app in a git-friendly and safe way

	ksconf xml-format

	alpha

	Normalize XML view and nav files

ksconf

Ksconf: Kintyre Splunk CONFig tool

This utility handles a number of common Splunk app maintenance tasks in a small
and easy to deploy package. Specifically, this tools deals with many of the
nuances with storing Splunk apps in git, and pointing live Splunk apps to a git
repository. Merging changes from the live system’s (local) folder to the
version controlled (default) folder, and dealing with more than one layer of
“default” (which splunk can’t handle natively) are all supported tasks.

usage: ksconf [-h] [--version] [--force-color]
 {check,combine,diff,filter,merge,minimize,promote,rest-export,rest-publish,snapshot,sort,unarchive,xml-format}
 ...

Named Arguments

	--version

	show program’s version number and exit

	--force-color

	Force TTY color mode on. Useful if piping the output a color-aware pager, like ‘less -R’

ksconf check

Provide basic syntax and sanity checking for Splunk’s .conf
files. Use Splunk’s builtin btool check for a more robust
validation of attributes and values.

Consider using this utility as part of a pre-commit hook.

usage: ksconf check [-h] [--quiet] FILE [FILE ...]

Positional Arguments

	FILE

	One or more configuration files to check.
If ‘-‘ is given, then read a list of files to validate from standard input

Named Arguments

	--quiet, -q

	Reduce the volume of output.

See also

Pre-commit hooks

See Pre-commit hooks for more information about how the check command can be easily
integrated in your git workflow.

How ‘check’ differs from btool’s validation

Keep in mind that ksconf idea of valid is different than Splunk’s. Specifically,

	Ksconf is more picky syntactically. Dangling stanzas and junk lines are picked up by
ksconf in general (the ‘check’ command or others), but silently ignored Splunk.

	Btool handles content validation. The btool check mode does a great job of check
stanza names, attribute names, and values. Btool does this well and ksconf tries to not repeat
things that Splunk already does well.

Why is this important?

Can you spot the error in this props.conf?

	1
2
3
4
5
6
7
8

	[myapp:web:access]
TIME_PREFIX = \[
SHOULD_LINEMERGE = false
category = Web
REPORT-access = access-extractions

[myapp:total:junk
TRANSFORMS-drop = drop-all

That’s right, line 7 contains the stanza myapp:total:junk that doesn’t have a closing].
How Splunk handle this? It ignores the broken stanza header completely and therefore TRANSFORMS-drop gets added
to the myapp:web:access sourcetype and very likely going to start loosing data.

Splunk also ignores entries like this:

EVAL-bytes-(coalesce(bytes_in,0)+coalesce(bytes_out,0))

Of course here there’s no = anywhere on the line, so Splunk just assumes it’s junk and silently
ignores it.

Tip

If you want to see how different this is. Run ksconf check against the system default files:

ksconf check --quiet $SPLUNK_HOME/etc/system/default/*.conf

There’s several files that ship with the core product that don’t pass this level of validation.

Note

Key concepts

Before diving into the combine command, it may be helpful to brush up on the concept of
configuration layers.

ksconf combine

Merge .conf settings from multiple source directories into a combined target
directory. Configuration files can be stored in a /etc/*.d like directory
structure and consolidated back into a single ‘default’ directory.

This command supports both one-time operations and recurring merge jobs. For
example, this command can be used to combine all users knowledge objects (stored
in ‘etc/users’) after a server migration, or to merge a single user’s settings
after an their account has been renamed. Recurring operations assume some type
of external scheduler is being used. A best-effort is made to only write to
target files as needed.

The ‘combine’ command takes your logical layers of configs (upstream, corporate,
splunk admin fixes, and power user knowledge objects, …) expressed as
individual folders and merges them all back into the single default folder
that Splunk reads from. One way to keep the ‘default’ folder up-to-date is
using client-side git hooks.

No directory layout is mandatory, but but one simple approach is to model your
layers using a prioritized ‘default.d’ directory structure. (This idea is
borrowed from the Unix System V concept where many services natively read their
config files from /etc/*.d directories.)

usage: ksconf combine [-h] [--target TARGET] [--dry-run] [--banner BANNER]
 source [source ...]

Positional Arguments

	source

	The source directory where configuration files will be merged from.
When multiple sources directories are provided, start with the most general and end
with the specific; later sources will override values from the earlier ones.
Supports wildcards so a typical Unix conf.d/##-NAME directory structure works well.

Named Arguments

	--target, -t

	Directory where the merged files will be stored.
Typically either ‘default’ or ‘local’

	--dry-run, -D

	Enable dry-run mode.
Instead of writing to TARGET, preview changes as a ‘diff’.
If TARGET doesn’t exist, then show the merged file.

	--banner, -b

	A banner or warning comment added to the top of the TARGET file. Used to discourage Splunk admins from editing an auto-generated file.

For other on-going combine operations, it’s helpful to inform any .conf file readers or potential editors that the file is automatically generated and therefore could be overwritten again.
For one-time combine operations, the default banner can be suppressed by passing in an empty string ('')

You may have noticed similarities between the combine and merge
subcommands. That’s because under the covers they are using much of the same code. The combine
operations essentially does a recursive merge between a set of directories. One big difference is
that combine command will gracefully handle non-conf files intelligently, not just conf files.

Note

Mixing layers

Just like all layers can be managed independently, they can also be combined in any way you’d
like. While this workflow is out side the scope of the examples provided here, it’s very doable.
This also allows for different layers to be mixed-and-matched by selectively including which
layers to combine.

Examples

Merging a multilayer app

Let’s assume you have a directory structure that looks like the following.
This example features the Cisco Security Suite.

Splunk_CiscoSecuritySuite/
├── README
├── default.d
│ ├── 10-upstream
│ │ ├── app.conf
│ │ ├── data
│ │ │ └── ui
│ │ │ ├── nav
│ │ │ │ └── default.xml
│ │ │ └── views
│ │ │ ├── authentication_metrics.xml
│ │ │ ├── cisco_security_overview.xml
│ │ │ ├── getting_started.xml
│ │ │ ├── search_ip_profile.xml
│ │ │ ├── upgrading.xml
│ │ │ └── user_tracking.xml
│ │ ├── eventtypes.conf
│ │ ├── macros.conf
│ │ ├── savedsearches.conf
│ │ └── transforms.conf
│ ├── 20-my-org
│ │ └── savedsearches.conf
│ ├── 50-splunk-admin
│ │ ├── indexes.conf
│ │ ├── macros.conf
│ │ └── transforms.conf
│ └── 70-firewall-admins
│ ├── data
│ │ └── ui
│ │ └── views
│ │ ├── attacks_noc_bigscreen.xml
│ │ ├── device_health.xml
│ │ └── user_tracking.xml
│ └── eventtypes.conf

In this structure, you can see several layers of configurations at play:

	The 10-upstream layer appears to be the version of the default folder that shipped with
the Cisco app.

	The 20-my-org layer is small and only contains tweaks to a few saved search entires.

	The 50-splunk-admin layer represents local settings changes to specify index
configurations, and to augment the macros and transformations that ship with the default app.

	And finally, 70-firewall-admins contains some additional view (2 new, and 1 existing).
Note that since user_tracking.xml is not a .conf file it will fully replace the
upstream default version (that is, the file in 10-upstream)

Here’s are the commands that could be used to generate a new (merged) default folder from all
these layers shown above.

cd Splunk_CiscoSecuritySuite
ksconf combine default.d/* --target=default

See also

The unarchive command can be used to install or upgrade apps stored
in a version controlled system in a layer-aware manor.

Consolidating ‘users’ directories

The combine can consolidate ‘users’ directory across several instances after a phased server migration.
See Migrating the ‘users’ folder.

ksconf diff

Compares the content differences of two .conf files

This command ignores textual differences (like order, spacing, and comments) and
focuses strictly on comparing stanzas, keys, and values. Note that spaces
within any given value will be compared. Multi-line fields are compared in are
compared in a more traditional ‘diff’ output so that long savedsearches and
macros can be compared more easily.

usage: ksconf diff [-h] [-o FILE] [--comments] CONF1 CONF2

Positional Arguments

	CONF1

	Left side of the comparison

	CONF2

	Right side of the comparison

Named Arguments

	-o, --output

	File where difference is stored. Defaults to standard out.

	--comments, -C

	Enable comparison of comments. (Unlikely to work consistently)

Example

Add screenshot here

To use ksconf diff as an external diff tool, check out Ksconf as external difftool.

ksconf filter

Filter the contents of a conf file in various ways. Stanzas can be included
or excluded based on provided filter, based on the presents or value of a key.

Where possible, this command supports GREP-like arguments to bring a familiar feel.

usage: ksconf filter [-h] [-o FILE] [--comments] [--verbose]
 [--match {regex,wildcard,string}] [--ignore-case]
 [--invert-match] [--files-with-matches]
 [--count | --brief] [--stanza PATTERN]
 [--attr-present ATTR] [--keep-attrs WC-ATTR]
 [--reject-attrs WC-ATTR]
 CONF [CONF ...]

Positional Arguments

	CONF

	Input conf file

Named Arguments

	-o, --output

	File where the filtered results are written. Defaults to standard out.

	--comments, -C

	Preserve comments. Comments are discarded by default.

	--verbose

	Enable additional output.

	--match, -m

	Possible choices: regex, wildcard, string

Specify pattern matching mode.
Defaults to ‘wildcard’ allowing for * and ? matching.
Use ‘regex’ for more power but watch out for shell escaping.
Use ‘string’ enable literal matching.

	--ignore-case, -i

	Ignore case when comparing or matching strings.
By default matches are case-sensitive.

	--invert-match, -v

	Invert match results.
This can be used to show what content does NOT match,
or make a backup copy of excluded content.

Output mode

Select an alternate output mode.
If any of the following options are used, the stanza output is not shown.

	--files-with-matches, -l

	List files that match the given search criteria

	--count, -c

	Count matching stanzas

	--brief, -b

	List name of matching stanzas

Stanza selection

Include or exclude entire stanzas using these filter options.

All filter options can be provided multiple times.
If you have a long list of filters, they can be saved in a file and referenced using
the special file:// prefix. One entry per line.

	--stanza

	Match any stanza who’s name matches the given pattern.
PATTERN supports bulk patterns via the file:// prefix.

	--attr-present

	Match any stanza that includes the ATTR attribute.
ATTR supports bulk attribute patterns via the file:// prefix.

Attribute selection

Include or exclude attributes passed through.
By default all attributes are preserved.
Whitelist (keep) operations are preformed before blacklist (reject) operations.

	--keep-attrs

	Select which attribute(s) will be preserved.
This space separated list of attributes indicates what to preserve.
Supports wildcards.

	--reject-attrs

	Select which attribute(s) will be discarded.
This space separated list of attributes indicates what to discard.
Supports wildcards.

How is this different that btool?

Some of the things filter can do functionally overlaps with btool list. Take for example:

ksconf filter search/default/savedsearches.conf --stanza "Messages by minute last 3 hours"

Is essentially the same as:

splunk btool --app=search savedsearches list "Messages by minute last 3 hours"

The output is the same, assuming that you didn’t overwrite any part of that search in local.
But if you take off the --app argument, you’ll quickly see that btool is merging all the layers
together to show the final value of all attributes. That is certainly a helpful thing to do,
but not always what you want.

Ksconf is always only looking at the file you explicitly pointed it to. It doesn’t traverse the
tree on it’s own. This means that it works on app directory structure that live inside or outside
of your Splunk instance. If you’ve ever tried to run btool check on an app that you haven’t
installed yet, then you’ll understand that value of this.

In many other cases, the usages of both ksconf filter and btool differ significantly.

Examples

Lift and shift

Copy all indexes defined within a specific app.

cd $SPLUNK_DB
for idx in $(ksconf filter $SPLUNK_HOME/etc/app/MyApp/default/indexes.conf --brief)
do
 echo "Copy index ${idx}"
 tar -czf "/migrate/export-${idx}" "${idx}"
done

Now you’ll have a copy all of the necessary indexes in the /migrate folder to make MyApp work on another Splunk instance.
Of course there’s likely other migration tasks to consider, like copying the actual app, this is just one way ksconf can help.

Can I do the same thing with standard unix tools?

Sure, go for it!

Yes, there’s significant overlap with the filter command and what you can do with grep,
awk, or sed. Much of that is on purpose, and in fact some command line
arguments were borrowed.

I used to do this stuff my hand, but it’s easy to screw up. The idea of ksconf is to
give you stable and reliable tools that are more suitable for .conf file work. Also keep in
mind that these features are expanding, much more quickly that the unix tools change.

Although, if you’ve had to deal with BSD vs GNU tools and trying to find a set of common arguments,
then you probably already appreciate how awesome a domain-specific-tool like this is.

ksconf merge

Merge two or more .conf files into a single combined .conf file.
This is similar to the way that Splunk logically combines the default and local
folders at runtime.

usage: ksconf merge [-h] [--target FILE] [--ignore-missing] [--dry-run]
 [--banner BANNER]
 FILE [FILE ...]

Positional Arguments

	FILE

	The source configuration file(s) to collect settings from.

Named Arguments

	--target, -t

	Save the merged configuration files to this target file.
If not provided, the merged conf is written to standard output.

	--ignore-missing, -s

	Silently ignore any missing CONF files.

	--dry-run, -D

	Enable dry-run mode.
Instead of writing to TARGET, preview changes in ‘diff’ format.
If TARGET doesn’t exist, then show the merged file.

	--banner, -b

	A banner or warning comment added to the top of the TARGET file.
Used to discourage Splunk admins from editing an auto-generated file.

Examples

Here’s a simple, possibly silly, example that merges all props.conf file from all of your technology addons into a single output file:

ksconf merge --target=all-ta-props.conf etc/apps/*TA*/{default,local}/props.conf

See an expanded version of this example here: Building an all-in one TA for your indexing tier

ksconf minimize

See also

See the Minimizing files for background on why this is important.

Minimize a conf file by removing any duplicated default settings.

Reduce a local conf file to only your intended changes without manually tracking
which entries you’ve edited. Minimizing local conf files makes your local
customizations easier to read and often results in cleaner upgrades.

usage: ksconf minimize [-h] [--target TARGET] [--dry-run | --output OUTPUT]
 [--explode-default] [-k PRESERVE_KEY]
 CONF [CONF ...]

Positional Arguments

	CONF

	The default configuration file(s) used to determine what base or settings are. The base settings determine what is unnecessary to repeat in target file.

Named Arguments

	--target, -t

	The local file that you wish to remove duplicate settings from. This file will be read from and then replaced with a minimized version.

	--dry-run, -D

	Enable dry-run mode. Instead of writing the minimizing the TARGET file, preview what would be removed the form of a ‘diff’.

	--output

	Write the minimized output to a separate file instead of updating TARGET.

This option can be used to preview the actual changes.
Sometimes if --dry-run mode produces too much output, it’s helpful to look at the
actual minimized version of the file in concrete form (rather than a relative format, like
a diff.)
This may also be helpful in other workflows.

	--explode-default, -E

	Enable minimization across stanzas for special use-cases. Helpful when dealing with stanzas downloaded from a REST endpoint or btool list output.

This mode will not only minimize the same stanza across multiple config files, it will
also attempt to minimize any default values stored in the [default] or global stanza
as well.
For this to be effective, it’s often necessary to include system-level defaults in the CONF list.
For example, to trim out cruft in savedsearches.conf, make sure you add
etc/system/default/savedsearches.conf as an input.

	-k, --preserve-key

	Specify attributes that should always be kept.

Example usage

cd Splunk_TA_nix
cp default/inputs.conf local/inputs.conf

Edit 'disabled' and 'interval' settings in-place
vi local/inputs.conf

Remove all the extra (unmodified) bits
ksconf minimize --target=local/inputs.conf default/inputs.conf

Undoing a minimize

You can use ksconf merge to reverse the effect of minimize by running a command like so:

ksconf merge default/inputs.conf local/inputs.conf

Additional capabilities

For special cases, the --explode-default mode reduces duplication between entries in normal stanzas (as normal) and
then additionally reduces duplication between individual stanzas and default entries.
Typically you only need this mode if your dealing with a conf file that’s been fully expanded to include all the layers,
which doesn’t happen under normal circumstances.
This does happen anytime you download a stanza from a REST endpoint or munge together output from btool list.
If you’ve ever done this with savedsearches.conf stanzas, you’ll be painfully aware of how massive they are!
This is the exact use case that --explode-default was written for.

In such a case, it may be helpful to minimize against the full definition of default, which effectively requires looking at all the layers of default.
This includes all global app settings, and system-level settings.

There are limitations to this approach.

	You have to manually list out all the layers.
(Sometimes just pointing to the system-level defaults is good enough)

	Minimize doesn’t take namespace into account.
This means ownership, sharing, and ACLs are ignored.

In many ways minimize mimics what Splunk does every time it updates a conf file, as discussed in How Splunk writes to conf files.
If you find yourself frequently needing the power of --explode-default,
at some point a potentially better approach may be to simply post stanzas to the REST endpoint.
However, this typically does a good enough job, especially for offline scenarios.

BTW, this command doesn’t strictly require a bloated file to work with.
For example, if disabled = 0 is both a global default, and set on a per-stanza basis, that could be reduced too.
However, typically this isn’t super helpful.

ksconf promote

Propagate .conf settings applied in one file to another. Typically this is used
to move local changes (made via the UI) into another layer, such as the
default or a named default.d/50-xxxxx) folder.

Promote has two modes: batch and interactive. In batch mode all changes are
applied automatically and the (now empty) source file is removed. In interactive
mode the user is prompted to select stanzas to promote. This way local changes
can be held without being promoted.

NOTE: Changes are MOVED not copied, unless --keep is used.

usage: ksconf promote [-h] [--batch | --interactive] [--force] [--keep]
 [--keep-empty]
 SOURCE TARGET

Positional Arguments

	SOURCE

	The source configuration file to pull changes from. Typically the local conf file)

	TARGET

	Configuration file or directory to push the changes into.
(Typically the default folder)

Named Arguments

	--batch, -b

	Use batch mode where all configuration settings are automatically promoted.
All changes are removed from source and applied to target.
The source file will be removed, unless
--keep-empty is used.

	--interactive, -i

	Enable interactive mode where the user will be prompted to approve
the promotion of specific stanzas and attributes.
The user will be able to apply, skip, or edit the changes being promoted.

	--force, -f

	Disable safety checks. Don’t check to see if SOURCE and TARGET share the same basename.

	--keep, -k

	Keep conf settings in the source file.
All changes will be copied into the target file instead of being moved there.
This is typically a bad idea since local always overrides default.

	--keep-empty

	Keep the source file, even if after the settings promotions the file has no content.
By default, SOURCE will be removed after all content has been moved into TARGET.
Splunk will re-create any necessary local files on the fly.

Warning

The promote command moves configuration settings between SOURCE and TARGET and therefore
both files are updated. This is unlike most other commands where only TARGET is modified.
Using the --keep argument will prevent SOURCE from being updated.

Modes

Promote has two different modes: batch and interactive.

	Batch mode

	Changes are applied automatically and the (now empty) source file is removed by default.
The source file can be retained by using either the --keep or --keep-empty arguments, see descriptions above.

	Interactive mode

	Prompt the user to pick which stanzas and attributes to integrate.
In practice, it’s common that not all local changes will be ready to be promoted and committed at the same time.

Hint

This mode was inspired by git add --patch command.

	Default

	If you haven’t specified either batch or interactive mode, you’ll be asked to pick one at startup.
You’ll be given the option to show a diff, apply all changes, or be prompted to keep or reject changes interactively.

Safety checks

Moving content between files is a potentially risky operation.
Here are some of the safety mechanisms that exist, because ksconf tries hard not to lose your stuff.

Tip

Pairing ksconf with a version control tool like git, while not required, does provide another layer of protection against loss or corruption.
If you promote and commit changes frequently then the surface area of potential loss is reduced.

	Syntax checking

	Strong syntax checking is enabled for both SOURCE and TARGET because otherwise mistakes like dangling or duplicate stanzas could lead to even more corruption.

	File fingerprinting

	Various attributes of the SOURCE and TARGET files are captured at startup and compared again before any changes are written to disk.
This reduces the possibility of a race-condition on a live Splunk system.
This mostly impacts interactive mode because the session lasts longer.
If this a concern, run promote only when Splunk is offline.

	Same file check

	Attempts to promote content from a file to itself are prevented.
While logically no one would want to do this, in practice having a clear error message saves time and confusion.

	Base name check

	The SOURCE and TARGET should share the same base name.
In other words, trying to promote from inputs.conf into props.conf (due to a typo) will be prevented.
This matters more in batch mode.
In interactive mode, it should be pretty obvious that the type of entries don’t make sense and therefore the user can simply exit without saving.

For scripting purposes, there may be times where pushing changes between arbitrary-named files is helpful, so this check can be bypassed by using the --force argument.

Note

Unfortunately the unit testing coverage for the promote command is quite low.
This is primarily because I haven’t yet figured out how to handle unit testing for interactive CLI tools (as this is the only interactive command to date.)
I’m also not sure how much the UI may change;
Any assistance in this area would be greatly appreciated.

Examples

A simple promotion looks like this.

ksconf promote local/props.conf default/props.conf

This is equivalent to this minor shortcut.

ksconf promote local/props.conf default

In this case, ksconf determines that default is a directory and therefore assumes that you want the same filename, props.conf in this case.

Tip

Using a directory as TARGET may seem like a trivial improvement, but in practice it greatly reduces accidental cross-promotion of content. Therefore we suggest its use.

Similarly, a shortcut for pushing between metadata files exists:

ksconf promote metadata/local.meta metadata

Interactive mode

Keyboard shortcuts

	Key

	Meaning

	Description

	y

	Yes

	Apply changes

	n

	No

	Don’t apply

	d

	Diff

	Show the difference between the file or stanza.

	q

	Quit

	Exit program. Don’t save changes.

Limitations

	Currently attribute-level section has not be implemented.
Entire stanzas are either kept local or promoted fully.

	Interactive mode currently lacks “help”.
In the meantime, see the keyboard shortcuts listed above.

	Currently comments in the SOURCE file will not be preserved.

	If SOURCE or TARGET is modified externally while promote is running, the entire operation will be aborted, thus loosing any custom selections you made in interactive mode.
This needs improvement.

	There’s currently no way to preserve certain local settings with some kind of “never-promote” flag.
It’s not uncommon to have some settings in inputs.conf, for example, that you never want to promote.

	There is no dry-run mode supported. Primarily, this is because it would only work for batch mode, and in interactive mode you explicitly see exactly what will be changed before anything is applied.
(If you really need a dry-run for batch mode, use ksconf merge to show the result of TARGET SOURCE combined.)

ksconf rest-export

Deprecated since version 0.7.0: You should consider using ksconf rest-publish instead of this one.
The only remaining valid use case for rest-export (this command) is for disconnected scenarios.
In other words, if you need to push stanzas to a splunkd instance where you don’t (and can’t) install ksconf,
then this command may still be useful to you.
In this case, ksconf rest-export can create a shell script that you can transfer to the correct network,
and then run the shell script.
But for ALL other use cases, the rest-publish command is superior.

Build an executable script of the stanzas in a configuration file that can be later applied to
a running Splunk instance via the Splunkd REST endpoint.

This can be helpful when pushing complex props & transforms to an instance where you only have
UI access and can’t directly publish an app.

usage: ksconf rest-export [-h] [--output FILE] [--disable-auth-output]
 [--pretty-print] [-u | -D] [--url URL] [--app APP]
 [--user USER] [--owner OWNER] [--conf TYPE]
 [--extra-args EXTRA_ARGS]
 CONF [CONF ...]

Positional Arguments

	CONF

	Configuration file(s) to export settings from.

Named Arguments

	--output, -t

	Save the shell script output to this file. If not provided, the output is written to standard output.

	-u, --update

	Assume that the REST entities already exist. By default output assumes stanzas are being created.

	-D, --delete

	Remove existing REST entities. This is a destructive operation.
In this mode, stanzas attributes are unnecessary and ignored.
NOTE: This works for ‘local’ entities only; the default folder cannot be updated.

	--url

	URL of Splunkd. Default: “https://localhost:8089”

	--app

	Set the namespace (app name) for the endpoint

	--user

	Deprecated. Use –owner instead.

	--owner

	Set the object owner. Typically the default of ‘nobody’ is ideal if you want to share the configurations at the app-level.

	--conf

	Explicitly set the configuration file type. By default this is derived from CONF, but
sometime it’s helpful set this explicitly. Can be any valid Splunk conf file type,
example include ‘app’, ‘props’, ‘tags’, ‘savedsearches’, and so on.

	--extra-args

	Extra arguments to pass to all CURL commands.
Quote arguments on the command line to prevent confusion between arguments to ksconf vs
curl.

Output Control

	--disable-auth-output

	Turn off sample login curl commands from the output.

	--pretty-print, -p

	Enable pretty-printing.
Make shell output a bit more readable by splitting entries across lines.

Warning

For interactive use only

This command is indented for manual admin workflows. It’s quite possible that shell escaping
bugs exist that may allow full shell access if you put this into an automated workflow. Evaluate
the risks, review the code, and run as a least-privilege user, and be responsible.

Roadmap

For now the assumption is that curl command will be used. (Patches to support the Power Shell
Invoke-WebRequest cmdlet would be greatly welcomed!)

Example

ksconf rest-export --output=apply_props.sh etc/app/Splunk_TA_aws/local/props.conf

ksconf rest-publish

Note

This command effectively replace ksconf rest-export for all nearly all use cases.
The only thing that rest-publish can’t do that rest-export is handle a disconnected scenario.
But for ALL other use cases, the rest-publish (this command) command is far superior.

Note

This commands requires the Splunk Python SDK, which is automatically bundled with the Splunk app for KSCONF.

Publish stanzas in a .conf file to a running Splunk instance via REST. This requires access to
the HTTPS endpoint of splunk. By default, ksconf will handle both the creation of new stanzas
and the update of exists stanzas.

This can be used to push full configuration stanzas where you only have REST access and can’t
directly publish an app.

Only attributes present in the conf file are pushed. While this may seem obvious, this fact can
have profound implications in certain situations, like when using this command for continuous
updates. This means that it’s possible for the source .conf to ultimately differ from what ends
up on the server’s .conf file. One way to avoid this is to explicitly remove object using
--delete mode first, and then insert a new copy of the object. Of course this means that
the object will be unavailable. The other impact is that diffs only compares and shows a subset
of attribute.

Be aware that, for consistency, the configs/conf-TYPE endpoint is used for this command.
Therefore, a reload may be required for the server to use the published config settings.

usage: ksconf rest-publish [-h] [--conf TYPE] [-m META] [--url URL]
 [--user USER] [--pass PASSWORD] [-k] [--app APP]
 [--owner OWNER] [--sharing {user,app,global}] [-D]
 CONF [CONF ...]

Positional Arguments

	CONF

	Configuration file(s) to export settings from.

Named Arguments

	--conf

	Explicitly set the configuration file type. By default this is derived from CONF, but
sometime it’s helpful set this explicitly. Can be any valid Splunk conf file type,
example include ‘app’, ‘props’, ‘tags’, ‘savedsearches’, and so on.

	-m, --meta

	Specify one or more .meta files to determine the desired read & write ACLs, owner, and sharing for objects in the CONF file.

	--url

	URL of Splunkd. Default: “https://localhost:8089”

	--user

	Login username Splunkd. Default: “admin”

	--pass

	Login password Splunkd. Default: “changeme”

	-k, --insecure

	Disable SSL cert validation.

	--app

	Set the namespace (app name) for the endpoint

	--owner

	Set the user who owns the content. The default of ‘nobody’ works well for app-level sharing.

	--sharing

	Possible choices: user, app, global

Set the sharing mode.

	-D, --delete

	Remove existing REST entities. This is a destructive operation.
In this mode, stanzas attributes are unnecessary.
NOTE: This works for ‘local’ entities only; the default folder cannot be updated.

Examples

A simple example:

ksconf rest-publish etc/app/Splunk_TA_aws/local/props.conf \
 --user admin --password secret --app Splunk_TA_aws --owner nobody --sharing global

This command also supports replaying metdata like ACLs:

ksconf rest-publish etc/app/Splunk_TA_aws/local/props.conf \
 --meta etc/app/Splunk_TA_aws/metdata/local.meta \
 --user admin --password secret --app Splunk_TA_aws

ksconf snapshot

Build a static snapshot of various configuration files stored within a structured json export
format. If the .conf files being captured are within a standard Splunk directory structure,
then certain metadata and namespace information is assumed based on typical path locations.
Individual apps or conf files can be collected as well, but less metadata may be extracted.

usage: ksconf snapshot [-h] [--output FILE] [--minimize] PATH [PATH ...]

Positional Arguments

	PATH

	Directory from which to load configuration files. All .conf and .meta file are included recursively.

Named Arguments

	--output, -o

	Save the snapshot to the named files. If not provided, the snapshot is written to
standard output.

	--minimize

	Reduce the size of the JSON output by removing whitespace. Reduces readability.

Warning

Output NOT stable!

The output from this command hasn’t really been tested in any kind of serious way for usability.
Consider this a proof-of-concept.
Anyone interested in this type of functionality should ref:reach out <contact-us> to discuss uses cases.

Example

ksconf snapshot --output=daily-$(date +%Y-%m-%d).json $SPLUNK_HOME/etc/app/

ksconf sort

Sort a Splunk .conf file. Sort has two modes: (1) by default, the sorted
config file will be echoed to the screen. (2) the config files are updated
in-place when the -i option is used.

Manually managed conf files can be blacklisted by adding a comment containing the
string KSCONF-NO-SORT to the top of any .conf file.

usage: ksconf sort [-h] [--target FILE | --inplace] [-F] [-q] [-n LINES]
 FILE [FILE ...]

Positional Arguments

	FILE

	Input file to sort, or standard input.

Named Arguments

	--target, -t

	File to write results to. Defaults to standard output.

	--inplace, -i

	Replace the input file with a sorted version.
Warning this a potentially destructive operation that may
move/remove comments.

	-n, --newlines

	Number of lines between stanzas.

In-place update arguments

	-F, --force

	Force file sorting for all files, even for files containing the special
‘KSCONF-NO-SORT’ marker.

	-q, --quiet

	Reduce the output.
Reports only updated or invalid files.
This is useful for pre-commit hooks, for example.

See also

Pre-commit hooks

See Pre-commit hooks for more information about how the sort command can be easily integrated in your git workflow.

Examples

To recursively sort all files

find . -name '*.conf' | xargs ksconf sort -i

ksconf unarchive

Install or overwrite an existing app in a git-friendly way.
If the app already exist, steps will be taken to upgrade it safely.

The default folder can be redirected to another path (i.e., default.d/10-upstream or
other desirable path if you’re using the ksconf combine tool to manage extra layers.)

usage: ksconf unarchive [-h] [--dest DIR] [--app-name NAME]
 [--default-dir DIR] [--exclude EXCLUDE] [--keep KEEP]
 [--allow-local]
 [--git-sanity-check {off,changed,untracked,ignored}]
 [--git-mode {nochange,stage,commit}] [--no-edit]
 [--git-commit-args GIT_COMMIT_ARGS]
 SPL

Positional Arguments

	SPL

	The path to the archive to install.

Supports tarballs (.tar.gz, .spl), and less-common zip files (.zip)

Named Arguments

	--dest

	Set the destination path where the archive will be extracted.
By default the current directory is used, but sane values include etc/apps,
etc/deployment-apps, and so on.

Often this will be a git repository working tree where splunk apps are stored.

	--app-name

	The app name to use when expanding the archive.
By default, the app name is taken from the archive as the top-level path included
in the archive (by convention).

Expanding archives that contain multiple (ITSI) or nested apps (NIX, ES) is not supported.)

	--default-dir

	Name of the directory where the default contents will be stored.
This is a useful feature for apps that use a dynamic default directory
that’s created and managed by the ‘combine’ mode.

	--exclude, -e

	Add a file pattern to exclude from extraction.
Splunk’s pseudo-glob patterns are supported here.
* for any non-directory match,
... for ANY (including directories),
and ? for a single character.

	--keep, -k

	Specify a pattern for files to preserve during an upgrade.
Repeat this argument to keep multiple patterns.

	--allow-local

	Allow local/* and local.meta files to be extracted from the archive.

Shipping local files is a Splunk app packaging violation so local files are blocked
to prevent customizations from being overridden.

	--git-sanity-check

	By default git status is run on the destination folder to detect working tree or
index modifications before the unarchive process starts, but this is configurable.
Sanity check choices go from least restrictive to most thorough:

	Use off to prevent any ‘git status’ safely checks.

	Use changed to abort only upon local modifications to files tracked by git.

	Use untracked (the default) to look for changed and untracked files before
considering the tree clean.

	Use ignored to enable the most intense safety check which will abort if local
changes, untracked, or ignored files are found.

	--git-mode

	Possible choices: nochange, stage, commit

Set the desired level of git integration.
The default mode is stage, where new, updated, or removed files are automatically
handled for you.

To prevent any git add or git rm commands from being run, pick the
‘nochange’ mode.

If a git commit is incorrect, simply roll it back with git reset or fix it with a
git commit --amend before the changes are pushed anywhere else. There’s no native
--dry-run or undo for unarchive mode because that’s why you’re using git in the first
place, right? (And such features would require significant overhead and unit testing)

	--no-edit

	Tell git to skip opening your editor on commit.
By default you will be prompted to review/edit the commit message.
(Git Tip: Delete the content of the default message to abort the commit.)

	--git-commit-args, -G

	Extra arguments to pass to ‘git’

Note

Git features are automatically disabled

Sanity checks and commit modes are automatically disabled if the app is being installed into a directory that is not contained within a git working tree.
And this check is only done after first confirming that git is present and functional.

ksconf xml-format

Normalize and apply consistent XML indentation and CDATA usage for XML dashboards and
navigation files.

Technically this could be used on any XML file, but certain element names specific to Splunk’s
simple XML dashboards are handled specially, and therefore could result in unusable results.

The expected indentation level is guessed based on the first element indentation, but can be
explicitly set if not detectable.

usage: ksconf xml-format [-h] [--indent INDENT] [--quiet] FILE [FILE ...]

Positional Arguments

	FILE

	One or more XML files to check.
If ‘-‘ is given, then a list of files is read from standard input

Named Arguments

	--indent

	Number of spaces. This is only used if indentation cannot be guessed from the existing file.

	--quiet, -q

	Reduce the volume of output.

See also

Pre-commit hooks

See Pre-commit hooks for more information about how the xml-format command can be
integrated in your git workflow.

NOTE: While it may work on other XML files, it hasn’t been tested for other files, and therefore is not recommended as a general-purpose XML formatter.
Specific awareness of various Simple XML tags is baked into this product.

Note

This command requires the external lxml Python module
This package was specifically selected (over the built-in ‘xml.etree’ interface) because it
(1) support round-trip preservation of CDATA blocks, and
(2) it is already ships with Splunk’s embedded Python.

This is an optional requirement, unless you want to use the xml-format command.
However, due to packaging limitations and pre-commit hook support, install the python package will attempt to install lxml as well.
Please reach out if this is causing issues for you; I’m looking into other options too.

Why is this important?

TODO: Note the value of using <!CDATA[[]]> blocks.

Value of consistent indentation.

To recursively format xml files

find . -path '*/data/ui/views/*.xml' -o -path '*/data/ui/nav/*.xml' | ksconf xml-format -

Cheat Sheet

Here’s a quick rundown of handy ksconf commands:

Note

Note that for clarity, most of the command line arguments are given in their long form.
Many options also have a short form too.

Long commands may be broken across line for readability. When this happens, a trailing
backslash (\) is added so the command could still be copied verbatim into most shells.

Sorry ebook users.
Trailing (\) probably will not look right on your screen.
But then again, you probably won’t be copy-n-pasting from your Kindle.

Contents

	Cheat Sheet

	General purpose

	Comparing files

	Sorting content

	Extract specific stanza

	Remove unwanted settings

	Cleaning up

	Reduce cruft in local

	Pushing local changes to default

	Advanced usage

	Migrating content between apps

	Migrating the ‘users’ folder

	Maintaining apps stored in a local git repository

	Putting it all together

	Pulling out a stanza defined in both default and local

	Building an all-in one TA for your indexing tier

General purpose

Comparing files

Show the differences between two conf files using ksconf diff.

ksconf diff savedsearches.conf savedsearches-mine.conf

Sorting content

Create a normalized version a configuration file, making conf files easier to merge with git.
Run an in-place sort like so:

ksconf sort --inplace savedsearches.conf

Tip

Use the ksconf-sort pre-commit hook to do this for you.

Extract specific stanza

Say you want to grep your conf file for a specific stanza pattern:

ksconf filter search/default/savedsearches.conf --stanza 'Errors in the last *'

Say you want to list stanzas containing cron_schedule:

ksconf filter Splunk_TA_aws/default/savedsearches.conf --brief \
 --attr-present 'cron_schedule'

Remove unwanted settings

Say you want to remove vsid from a legacy savedsearches file:

ksconf filter search/default/savedsearches.conf --reject-attrs "vsid"

To see just to the schedule and scheduler status of scheduled searches, run:

ksconf filter Splunk_TA_aws/default/savedsearches.conf \
 --attr-present cron_schedule \
 --keep-attrs 'cron*' \
 --keep-attrs enableSched
 --keep-attrs disabled

Cleaning up

Reduce cruft in local

If you’re in the habit of copying the default files to local in the TAs you deploy, here a quick way to ‘minimize’ your files. This will reduce the local file by removing all the default settings you copied but didn’t change. (The importance of this is outlined in Minimizing files.)

ksconf minimize Splunk_TA_nix/default/inputs.conf --target Splunk_TA_nix/local/inputs.conf

Pushing local changes to default

App developers can push changes from the local folder over to the default folder:

ksconf promote --interactive myapp/local/props.conf myapp/default/props.conf

You will be prompted to pick which items you want to promote.
Or use the --batch option to promote everything in one step, without reviewing the changes first.

Advanced usage

Migrating content between apps

Say you want to move a bunch of savedsearches from search into a more appropriate app. First create a file that list all the names of your searches (one per line) in corp_searches.txt

ksconf filter --match string --stanza 'file://corp_searches.txt' \
 search/local/savedsearches.conf --output corp_app/default/savedsearches.conf

And now, to avoid duplication and confusion, you want to remove that exact same set of searches from the search app.

ksconf filter --match string --stanza 'file://corp_searches.txt' \
 --invert-match search/local/savedsearches.conf \
 --output search/local/savedsearches.conf.NEW

Backup the original
mv search/local/savedsearches.conf \
 /my/backup/location/search-savedsearches-$(date +%Y%M%D).conf

Move the updated file in place
mv search/local/savedsearches.conf.NEW search/local/savedsearches.conf

Note

Setting the matching mode to string prevents any special characters that may be present in
your search names from being interpreted as wildcards.

Migrating the ‘users’ folder

Say you stood up a new Splunk server and the migration took longer than expected.
Now you have two users folders and don’t want to loose all the goodies stored in either one.
You’ve copied the users folder to user_old.
You’re working from the new server and would generally prefer to keep whatever on the new server over what’s on the old.
(This is because some of your users copied over some of their critical alerts manually while waiting for the migration to complete, and they’ve made updates they don’t want to lose.)

After stopping Splunk on the new server, run the following commands.

mv /some/share/users_old $SPLUNK_HOME/etc/users.old
mv $SPLUNK_HOME/etc/users $SPLUNK_HOME/etc/users.new

ksconf combine $SPLUNK_HOME/etc/users.old $SPLUNK_HOME/etc/users.new \
 --target $SPLUNK_HOME/etc/users --banner ''

Now double check the results and start Splunk back up.

We use the --banner option here to essential disable an output banner.
Because, in this case, the combine operation is a one-time job and therefore no warning is needed.

Maintaining apps stored in a local git repository

ksconf unarchive

Putting it all together

Pulling out a stanza defined in both default and local

Say wanted to count the number of searches containing the word error

ksconf merge default/savedsearches.conf local/savedsearches.conf \
 | ksconf filter - --stanza '*Error*' --ignore-case --count

This is a simple example of chaining two basic ksconf commands together to perform a more complex operation.
The first command handles the merge of default and local savedsearches.conf into a single output stream.
The second command filters the resulting stream finding stanzas containing the word ‘Error’.

Building an all-in one TA for your indexing tier

Say you need to build a single TA containing all the index-time settings for your indexing tier.
(Note: Enterprise Security does something similar this whenever they generate the indexer app.)

ksconf merge etc/apps/*TA*/{default,local}/props.conf \
 | ksconf filter --output=TA-for-indexers/default/props.conf \
 --include-attr 'TRANSFORMS*' \
 --include-attr 'TIME_*' \
 --include-attr 'MUST_BREAK*' \
 --include-attr 'SHOULD_LINEMERGE' \
 --include-attr 'EVENT_BREAKER*' \
 --include-attr 'LINE_BREAKER*'

This example is incomplete because it doesn’t list every index-time props.conf attribute, and leaves out file:transforms.conf and fields.conf, but hopefully you get the idea.

Contributing

Pull requests are greatly welcome! If you plan on contributing code back to the main ksconf
repo, please follow the standard GitHub fork and pull-request work-flow. We also ask that you enable
a set of git hooks to help safeguard against avoidable issues.

Pre-commit hook

The ksconf project uses the pre-commit [https://pre-commit.com/] hook to enable the following checks:

	Fixes trailing whitespace, EOF, and EOLs

	Confirms python code compiles (AST)

	Blocks the committing of large files and keys

	Rebuilds the dynamic portions of the docs related to the CLI.

	Confirms that all Unit test pass. (Currently this is the same tests also run by Travis CI, but
since test complete in under 5 seconds, the run-everywhere approach seems appropriate for now.
Eventually, the local testing will likely become a subset of the full test suite.)

Note

Multiple uses of pre-commit

Be aware that the ksconf repo [https://github.com/Kintyre/ksconf] both uses pre-commit for validation of it’s own content and it provides a pre-commit hook service definition for other repos.
The first scenario is discussed in this section of the docs.
The second scenario is for repositories housing Splunk apps to use ksconf check and ksconf sort as easy to use hooks against their own .conf files which is discussed further in Pre-commit hooks.

Installing the pre-commit hook

To ensure your changes comply with the ksconf coding standards, please install and activate pre-commit [https://pre-commit.com/].

Install:

sudo pip install pre-commit

Register the pre-commit hooks (one time setup)
cd ksconf
pre-commit install --install-hooks

Install gitlint

Gitlint [https://jorisroovers.github.io/gitlint/] will check to ensure that commit messages are in compliance with the standard subject,
empty-line, body format. You can enable it with:

gitlint install-hook

Refresh module listing

After making changes to the module hierarchy or simply adding new commands, refresh the listing for
the autodoc extension by running the following command. Note that this may not remove old packages.

sphinx-apidoc -o docs/source/ ksconf --force

Create a new subcommand

Checklist:

	Create a new module in ksconf.commands.<CMD>.

	Create a new class derived from KsconfCmd.
You must at a minimum define the following methods:

	register_args() to setup any config parser inputs.

	run() which handles the actual execution of the command.

	Register a new entrypoint configuration in the setup_entrypoints.py script.
Edit the _entry_points dictionary to add an entry for the new command.

	Each entry must include command name, module, and implementation class.

	Create unit tests in test/test_cli_<CMD>.py.

	Create documentation in docs/source/cmd_<CMD>.rst.
You’ll want to build the docs locally to make sure everything looks correct.
Part of the documentation is automatically generated from the argparse arguments defined in the register_args() method,
but other bits need to be spelled out explicitly.

When in doubt, it may be helpful to look back over history in git for other recently added commands and use that as an example.

Developer setup

The following steps highlight the developer install process.

Tools

If you are a developer then we strongly suggest installing into a virtual environment to prevent
overwriting the production version of ksconf and for the installation of the developer tools. (The
virtualenv name ksconfdev-pyve is used below, but this can be whatever suites, just make sure
not to commit it.)

Setup and activate virtual environment
virtualenv ksconfdev-pyve
. ksconfdev-pyve/bin/activate

Install developer packages
pip install -r requirements-dev.txt

Install ksconf

git clone https://github.com/Kintyre/ksconf.git
cd ksconf
pip install .

Building the docs

cd ksconf
. ksconfdev-pyve/bin/activate

cd docs
make html
open build/html/index.html

If you’d like to build PDF, then you’ll need some extra tools. On Mac, you may also want to install
the following (for building docs, and the like):

brew install homebrew/cask/mactex-no-gui

Git tips & tricks

Pre-commit hooks

Ksconf is setup to work as a pre-commit [https://pre-commit.com/] plugin.
To use ksconf in this manner, simply configuring the ksconf repo in your pre-commit configuration file.
If you haven’t done any of this before, it’s not difficult to setup but beyond the scope of this guide.
Go read the pre-commit docs and circle back here when ready to setup the hooks.

Hooks provided by ksconf

Two hooks are currently defined by the ksconf repository:

	ksconf-check

	Runs ksconf check to perform basic validation tests against all files
in your repo that end with .conf or .meta.
Any errors will be reported by the UI at commit time and
you’ll be able to correct mistakes before bogus files are committed into your repo.
If you’re not sure why you’d need this, check out Why validate my conf files?

	ksconf-sort

	Runs ksconf sort to normalize any of your .conf or .meta files
which will make diffs more readable and merging more predictable.
As with any hook, you can customize the filename pattern of which files this applies to.
For example, to manually organize props.conf files, simply add the exclude setting.
Example below.

	ksconf-xml-format:

	Runs ksconf xml-format to apply consistency to your XML representations of Simple XML dashboards and navigation files.
Formatting includes appropriate indention and the automatic addition of <![CDATA[...]]> blocks, as needed,
to reduce the need for XML escaping, resulting in more readable source file.
By default, this hook looks at standard locations where xml views and navigation typically live.
So if you use Advanced XML, proceed with caution (as they share the same path and haven’t been tested.)

Configuring pre-commit hooks in you repo

To add ksconf pre-commit hooks to your repository, add the following content to your
.pre-commit-config.yaml file:

repos:
- repo: https://github.com/Kintyre/ksconf
 sha: v0.7.4
 hooks:
 - id: ksconf-check
 - id: ksconf-sort
 - id: ksconf-xml-format

For general reference, here’s a copy of what I frequently use for my own repos.

- repo: https://github.com/pre-commit/pre-commit-hooks
 sha: v2.0.0
 hooks:
 - id: trailing-whitespace
 exclude: README.md
 - id: end-of-file-fixer
 exclude: README.md$
 - id: check-json
 - id: check-xml
 - id: check-ast
 - id: check-added-large-files
 args: ['--maxkb=50']
 - id: check-merge-conflict
 - id: detect-private-key
 - id: mixed-line-ending
 args: ['--fix=lf']
- repo: https://github.com/Kintyre/ksconf
 sha: v0.7.4
 hooks:
 - id: ksconf-check
 - id: ksconf-sort
 exclude: (props|logging)\.conf
 - id: ksconf-xml-format

Tip

You may want to update sha to the most currently released stable version.
Upgrading this frequently isn’t typically necessary since these two operations are pretty basic and stable.
But it’s still a good idea to review the change log to see what (if any) pre-commit functionality was updated.

Note

Sometimes pre-commit can get in the way.
Instead of disabling it entirely, it’s often better to disable just the specific rule that’s causing an issue
using the SKIP environmental variable.
So for example, if intentionally adding a file over 50 Kb, a command like this will allow all the other rules to still run.

SKIP=check-added-large-file git commit -m "Refresh lookup files for bogus TA"

This and other tricks are fully documented in the pre-commit [https://pre-commit.com/] docs.
However, this comes up frequently enough that it’s worth repeating here.

Should my version of ksconf and pre-commit plugins be the same?

If you’re running both ksconf locally as well as the ksconf pre-commit plugin then technically you have ksconf installed twice.
That may sound less than ideal, but practically, this isn’t a problem.
As long as the version of the ksconf CLI tool is close to the sha listed in .pre-commit-config.yaml, then everything should work fine.

My suggestion:

	Keep versions in the same major.minor release range. Or bump the version every 6-12 months.

	Check the changelog for any pre-commit related changes or compatibility concerns.

While keeping ksconf CLI versions in sync across your environment is recommended, it doesn’t matter as much for the pre-commit plugin. Why?

	The pre-commit plugin offers a small subset of overall ksconf functionality.

	The exposed functionality is stable and changes infrequently.

	Updating pre-commit too frequently may cause unnecessary delays if you have a large team or high number of git clones throughout your environment, as each one will have to wait and upgrade the next time pre-commit is kicked off.

Git configuration tweaks

Ksconf as external difftool

Use ksconf diff as an external difftool provider for git.
Edit ~/.gitconfig and add the following entries:

[difftool "ksconf"]
 cmd = "ksconf --force-color diff \"$LOCAL\" \"$REMOTE\" | less -R"
[difftool]
 prompt = false
[alias]
 ksdiff = "difftool --tool=ksconf"

Now you can run this new git alias to compare files in your directory using the ksconf diff
feature instead of the default textual diff that git provides.
This is especially helpful if the ksconf-sort pre-commit hook hasn’t been enabled.

git ksdiff props.conf

Tip

Wonky version of git?

If you find yourself in the situation where git-difftool hasn’t been fully installed correctly (or the Perl extensions are missing), then here’s a workaround option for you.

ksconf diff <(git show HEAD:./props.conf) props.conf

Take note of the relative path prefix ./.
In practice, this can get ugly.

Stanza aware textual diffs

Make git diff show the ‘stanza’ on the @@ output lines.

Note

How does git know that?

Ever wonder how git diff is able to show you the name of the function or method where changes
were made? This works for many programming languages out of the box. If you’ve ever spend much
time looking at diffs that additional context is invaluable. As it turns out, this is
customizable by adding a stanza matching regular expression with a file pattern match.

Simply add the following settings to your git configuration:

[diff "conf"]
 xfuncname = "^(\\[.*\\])$"

Then register this new ability with specific file patterns using git’s attributes feature.
Edit ~/.config/git/attributes and add:

*.conf diff=conf
*.meta diff=conf

Note

Didn’t work as expected?

Be aware that the location for your global-level attributes may be different.
Use the following command to test if the settings have been applied.

git check-attr -a -- *.conf

Test to make sure the xfuncname attribute was set as expected:

git config diff.conf.xfuncname

Random

Typographic and Convention

Pronounced: k·s·kȯnf

Capitalization:

	Form

	Acceptability factor

	ksconf

	Always lower for CLI.
Generally preferred.

	KSCONF

	Okay for titles.

	Ksconf

	Title case is okay too.

	KSConf

	You’ll see this, but weird.

	KsConf

	No, except maybe in a class name?

	KsconF

	Thought about it.
Reserved for ASCII art ONLY

I wrote this while laughing at my own lack of consistency.

– Lowell

How Splunk writes to conf files

Splunk does some counter intuitive thing when it writes to local conf files.

For example,

	All conf file updates are automatically minimized.
Splunk never has to write the entire contents because updates only happen to “local” files.

	Modified stanzas are sometimes rewritten in place,
and other times removed from the current position and moved to the bottom of the .conf file.
This behavior appears to vary based on what REST endpoint is used to initiate the update.

	New stanzas are written with attributes sorted lexicographically.
When a stanzas is updated in place the modified attributes may be updated in place and
new entires are typically added at the bottom of the stanza.

	Sometimes boolean values persist in unexpected ways.
(Primarily this is because there’s more than one way to represent them textually,
and that textual representation is different than what’s stored in default.)
Often literal values are passed through a conf REST POST so they make it to disk,
but when read are translated into booleans.

Essentially, splunk will always “minimize” the conf file at each any every update. This is because
Splunk internally keeps track of the final representation of the entire stanza (in memory), and only
when it’s written to disk does Splunk care about the current contents of the local file. In
fact, Splunk re-reads the conf file immediately before updating it. This is why, if you’ve made a
local changes, and forgot to reload, Splunk will typically not lose your change (unless you’ve
update the same attribute both places… I mean, it’s not magic.)

Tip

Don’t believe me? Try it yourself.

To prove that it works this way, simply find a saved search that you modified from any app that
you installed. Look at the local conf file and observe your changes. Now go edit the saved
search and restore some attribute to it’s original value (the most obvious one here would be the
search attribute), but that’s tricky if it’s multiple lines. Now go look at the local conf
file again. If you’ve updated it with exactly the same value, then that attribute will have been
completely removed from the local file. This is in fact a neat trick that can be used to revert
local changes to allow future updates to “pass-though” unimpeded. In SHC scenarios, this may
be your only option to remove local settings.

Okay, so what’s the value in having a minimize command if Splunk does
this automatically every time it’s makes a change? Well, simply put, because Splunk can’t write to
all local file locations. Splunk only writes to system, etc/users, and etc/apps local folders (and
sometimes to deployment-apps app.conf local file, but that’s a completely different story.)

Also, there are times where boolean values will show up in an unexpected manor because of how
Splunk treats them internally. I’m still not sure if this is a silly mistake in the default .conf
files or a clever workaround to what’s essentially a design flaw in the conf system. But either
way, I suspect the user benefits. Because splunk accepts more values as boolean than what it will
write out, this means that certain boolean values will always be explicitly store in the conf files.
This means that disabled and bunches of other settings in savedsearches.conf always get
explicitly written. How is that helpful? Well, imagine what would happen if you accidentally
changed disabled = 1 in the global stanzas in savedsearches.conf. Well, nothing if all
savedsearches have that values explicitly written. The point is this: there are times when
repeating yourself isn’t a bad thing. (Incidentally, this is the reason for the --preserve-key
flag on the minimize command.)

Grandfather Paradox

The KSCONF Splunk app breaks it’s designed paradigm (not in a good way). Ksconf was designed to be
the thing that manages all your other apps, so by deploying ksconf as an app itself, we open up the
possibility that ksconf could upgrade it self or deploy itself, or manage itself. Basically it
could cut off the limb that it’s standing on. So practically this can get messy, especially if
you’re on Windows where file locking is also likely to cause issues.

So sure, if you want to be picky, “Grandfather paradox” is probably the wrong analogy.
Pull requests welcome.

Contact

If you have questions, concerns, ideas about the product or how to make it better. Please let us know.

Here are some way to get in contact with us, and other KSCONF users:

	Chat about #ksconf [https://slack.com/app_redirect?channel=CDVT14KUN] on Splunk’s Slack [https://splunk-usergroups.slack.com] channel.

	Email us at hello@kintyre.co for general inquiries, if you’re interested in commercial support, or would like to fund new features.

	Ask as question on

	Splunk Answers [https://answers.splunk.com/app/questions/4383.html]

	GitHub [https://github.com/Kintyre/ksconf/issues/new?labels=question]

Command line reference

KSCONF supports the following CLI options:

ksconf

usage: ksconf [-h] [--version] [--force-color]
 {check,combine,diff,filter,promote,merge,minimize,snapshot,sort,rest-export,rest-publish,unarchive,xml-format}
 ...

Ksconf: Kintyre Splunk CONFig tool

This utility handles a number of common Splunk app maintenance tasks in a small
and easy to deploy package. Specifically, this tools deals with many of the
nuances with storing Splunk apps in git, and pointing live Splunk apps to a git
repository. Merging changes from the live system's (local) folder to the
version controlled (default) folder, and dealing with more than one layer of
"default" (which splunk can't handle natively) are all supported tasks.

positional arguments:
 {check,combine,diff,filter,promote,merge,minimize,snapshot,sort,rest-export,rest-publish,unarchive,xml-format}
 check Perform basic syntax and sanity checks on .conf files
 combine Combine configuration files across multiple source
 directories into a single destination directory. This
 allows for an arbitrary number of splunk configuration
 layers to coexist within a single app. Useful in both
 ongoing merge and one-time ad-hoc use.
 diff Compare settings differences between two .conf files
 ignoring spacing and sort order
 filter A stanza-aware GREP tool for conf files
 promote Promote .conf settings between layers using either
 either in batch mode (all changes) or interactive
 mode. Frequently this is used to promote conf changes
 made via the UI (stored in the 'local' folder) to a
 version-controlled directory, often 'default'.
 merge Merge two or more .conf files
 minimize Minimize the target file by removing entries
 duplicated in the default conf(s)
 snapshot Snapshot .conf file directories into a JSON dump
 format
 sort Sort a Splunk .conf file creating a normalized format
 appropriate for version control
 rest-export Export .conf settings as a curl script to apply to a
 Splunk instance later (via REST)
 rest-publish Publish .conf settings to a live Splunk instance via
 REST
 unarchive Install or upgrade an existing app in a git-friendly
 and safe way
 xml-format Normalize XML view and nav files

optional arguments:
 -h, --help show this help message and exit
 --version show program's version number and exit
 --force-color Force TTY color mode on. Useful if piping the output a
 color-aware pager, like 'less -R'

ksconf check

usage: ksconf check [-h] [--quiet] FILE [FILE ...]

Provide basic syntax and sanity checking for Splunk's .conf files. Use
Splunk's builtin 'btool check' for a more robust validation of attributes and
values. Consider using this utility as part of a pre-commit hook.

positional arguments:
 FILE One or more configuration files to check. If '-' is given, then
 read a list of files to validate from standard input

optional arguments:
 -h, --help show this help message and exit
 --quiet, -q Reduce the volume of output.

ksconf combine

usage: ksconf combine [-h] [--target TARGET] [--dry-run] [--banner BANNER]
 source [source ...]

Merge .conf settings from multiple source directories into a combined target
directory. Configuration files can be stored in a '/etc/*.d' like directory
structure and consolidated back into a single 'default' directory.

This command supports both one-time operations and recurring merge jobs. For
example, this command can be used to combine all users knowledge objects (stored
in 'etc/users') after a server migration, or to merge a single user's settings
after an their account has been renamed. Recurring operations assume some type
of external scheduler is being used. A best-effort is made to only write to
target files as needed.

The 'combine' command takes your logical layers of configs (upstream, corporate,
splunk admin fixes, and power user knowledge objects, ...) expressed as
individual folders and merges them all back into the single 'default' folder
that Splunk reads from. One way to keep the 'default' folder up-to-date is
using client-side git hooks.

No directory layout is mandatory, but but one simple approach is to model your
layers using a prioritized 'default.d' directory structure. (This idea is
borrowed from the Unix System V concept where many services natively read their
config files from '/etc/*.d' directories.)

positional arguments:
 source The source directory where configuration files will be
 merged from. When multiple sources directories are
 provided, start with the most general and end with the
 specific; later sources will override values from the
 earlier ones. Supports wildcards so a typical Unix
 'conf.d/##-NAME' directory structure works well.

optional arguments:
 -h, --help show this help message and exit
 --target TARGET, -t TARGET
 Directory where the merged files will be stored.
 Typically either 'default' or 'local'
 --dry-run, -D Enable dry-run mode. Instead of writing to TARGET,
 preview changes as a 'diff'. If TARGET doesn't exist,
 then show the merged file.
 --banner BANNER, -b BANNER
 A banner or warning comment added to the top of the
 TARGET file. Used to discourage Splunk admins from
 editing an auto-generated file.

ksconf diff

usage: ksconf diff [-h] [-o FILE] [--comments] CONF1 CONF2

Compares the content differences of two .conf files

This command ignores textual differences (like order, spacing, and comments) and
focuses strictly on comparing stanzas, keys, and values. Note that spaces
within any given value will be compared. Multi-line fields are compared in are
compared in a more traditional 'diff' output so that long savedsearches and
macros can be compared more easily.

positional arguments:
 CONF1 Left side of the comparison
 CONF2 Right side of the comparison

optional arguments:
 -h, --help show this help message and exit
 -o FILE, --output FILE
 File where difference is stored. Defaults to standard
 out.
 --comments, -C Enable comparison of comments. (Unlikely to work
 consistently)

ksconf filter

usage: ksconf filter [-h] [-o FILE] [--comments] [--verbose]
 [--match {regex,wildcard,string}] [--ignore-case]
 [--invert-match] [--files-with-matches]
 [--count | --brief] [--stanza PATTERN]
 [--attr-present ATTR] [--keep-attrs WC-ATTR]
 [--reject-attrs WC-ATTR]
 CONF [CONF ...]

Filter the contents of a conf file in various ways. Stanzas can be included or
excluded based on provided filter, based on the presents or value of a key.
Where possible, this command supports GREP-like arguments to bring a familiar
feel.

positional arguments:
 CONF Input conf file

optional arguments:
 -h, --help show this help message and exit
 -o FILE, --output FILE
 File where the filtered results are written. Defaults
 to standard out.
 --comments, -C Preserve comments. Comments are discarded by default.
 --verbose Enable additional output.
 --match {regex,wildcard,string}, -m {regex,wildcard,string}
 Specify pattern matching mode. Defaults to 'wildcard'
 allowing for '*' and '?' matching. Use 'regex' for
 more power but watch out for shell escaping. Use
 'string' enable literal matching.
 --ignore-case, -i Ignore case when comparing or matching strings. By
 default matches are case-sensitive.
 --invert-match, -v Invert match results. This can be used to show what
 content does NOT match, or make a backup copy of
 excluded content.

Output mode:
 Select an alternate output mode. If any of the following options are used,
 the stanza output is not shown.

 --files-with-matches, -l
 List files that match the given search criteria
 --count, -c Count matching stanzas
 --brief, -b List name of matching stanzas

Stanza selection:
 Include or exclude entire stanzas using these filter options. All filter
 options can be provided multiple times. If you have a long list of
 filters, they can be saved in a file and referenced using the special
 'file://' prefix. One entry per line.

 --stanza PATTERN Match any stanza who's name matches the given pattern.
 PATTERN supports bulk patterns via the 'file://'
 prefix.
 --attr-present ATTR Match any stanza that includes the ATTR attribute.
 ATTR supports bulk attribute patterns via the
 'file://' prefix.

Attribute selection:
 Include or exclude attributes passed through. By default all attributes
 are preserved. Whitelist (keep) operations are preformed before blacklist
 (reject) operations.

 --keep-attrs WC-ATTR Select which attribute(s) will be preserved. This
 space separated list of attributes indicates what to
 preserve. Supports wildcards.
 --reject-attrs WC-ATTR
 Select which attribute(s) will be discarded. This
 space separated list of attributes indicates what to
 discard. Supports wildcards.

ksconf promote

usage: ksconf promote [-h] [--batch | --interactive] [--force] [--keep]
 [--keep-empty]
 SOURCE TARGET

Propagate .conf settings applied in one file to another. Typically this is used
to move 'local' changes (made via the UI) into another layer, such as the
'default' or a named 'default.d/50-xxxxx') folder.

Promote has two modes: batch and interactive. In batch mode all changes are
applied automatically and the (now empty) source file is removed. In interactive
mode the user is prompted to select stanzas to promote. This way local changes
can be held without being promoted.

NOTE: Changes are *MOVED* not copied, unless '--keep' is used.

positional arguments:
 SOURCE The source configuration file to pull changes from.
 Typically the 'local' conf file)
 TARGET Configuration file or directory to push the changes into.
 (Typically the 'default' folder)

optional arguments:
 -h, --help show this help message and exit
 --batch, -b Use batch mode where all configuration settings are
 automatically promoted. All changes are removed from
 source and applied to target. The source file will be
 removed, unless '--keep-empty' is used.
 --interactive, -i Enable interactive mode where the user will be prompted
 to approve the promotion of specific stanzas and
 attributes. The user will be able to apply, skip, or edit
 the changes being promoted.
 --force, -f Disable safety checks. Don't check to see if SOURCE and
 TARGET share the same basename.
 --keep, -k Keep conf settings in the source file. All changes will
 be copied into the target file instead of being moved
 there. This is typically a bad idea since local always
 overrides default.
 --keep-empty Keep the source file, even if after the settings
 promotions the file has no content. By default, SOURCE
 will be removed after all content has been moved into
 TARGET. Splunk will re-create any necessary local files
 on the fly.

ksconf merge

usage: ksconf merge [-h] [--target FILE] [--ignore-missing] [--dry-run]
 [--banner BANNER]
 FILE [FILE ...]

Merge two or more .conf files into a single combined .conf file. This is
similar to the way that Splunk logically combines the 'default' and 'local'
folders at runtime.

positional arguments:
 FILE The source configuration file(s) to collect settings
 from.

optional arguments:
 -h, --help show this help message and exit
 --target FILE, -t FILE
 Save the merged configuration files to this target
 file. If not provided, the merged conf is written to
 standard output.
 --ignore-missing, -s Silently ignore any missing CONF files.
 --dry-run, -D Enable dry-run mode. Instead of writing to TARGET,
 preview changes in 'diff' format. If TARGET doesn't
 exist, then show the merged file.
 --banner BANNER, -b BANNER
 A banner or warning comment added to the top of the
 TARGET file. Used to discourage Splunk admins from
 editing an auto-generated file.

ksconf minimize

usage: ksconf minimize [-h] [--target TARGET] [--dry-run | --output OUTPUT]
 [--explode-default] [-k PRESERVE_KEY]
 CONF [CONF ...]

Minimize a conf file by removing any duplicated default settings. Reduce a
local conf file to only your intended changes without manually tracking which
entries you've edited. Minimizing local conf files makes your local
customizations easier to read and often results in cleaner upgrades.

positional arguments:
 CONF The default configuration file(s) used to determine
 what base or settings are. The base settings determine
 what is unnecessary to repeat in target file.

optional arguments:
 -h, --help show this help message and exit
 --target TARGET, -t TARGET
 The local file that you wish to remove duplicate
 settings from. This file will be read from and then
 replaced with a minimized version.
 --dry-run, -D Enable dry-run mode. Instead of writing the minimizing
 the TARGET file, preview what would be removed the
 form of a 'diff'.
 --output OUTPUT Write the minimized output to a separate file instead
 of updating TARGET.
 --explode-default, -E
 Enable minimization across stanzas for special use-
 cases. Helpful when dealing with stanzas downloaded
 from a REST endpoint or 'btool list' output.
 -k PRESERVE_KEY, --preserve-key PRESERVE_KEY
 Specify attributes that should always be kept.

ksconf snapshot

usage: ksconf snapshot [-h] [--output FILE] [--minimize] PATH [PATH ...]

Build a static snapshot of various configuration files stored within a
structured json export format. If the .conf files being captured are within a
standard Splunk directory structure, then certain metadata and namespace
information is assumed based on typical path locations. Individual apps or
conf files can be collected as well, but less metadata may be extracted.

positional arguments:
 PATH Directory from which to load configuration files. All
 .conf and .meta file are included recursively.

optional arguments:
 -h, --help show this help message and exit
 --output FILE, -o FILE
 Save the snapshot to the named files. If not provided,
 the snapshot is written to standard output.
 --minimize Reduce the size of the JSON output by removing
 whitespace. Reduces readability.

ksconf sort

usage: ksconf sort [-h] [--target FILE | --inplace] [-F] [-q] [-n LINES]
 FILE [FILE ...]

Sort a Splunk .conf file. Sort has two modes: (1) by default, the sorted
config file will be echoed to the screen. (2) the config files are updated
in-place when the '-i' option is used.

Manually managed conf files can be blacklisted by adding a comment containing the
string 'KSCONF-NO-SORT' to the top of any .conf file.

positional arguments:
 FILE Input file to sort, or standard input.

optional arguments:
 -h, --help show this help message and exit
 --target FILE, -t FILE
 File to write results to. Defaults to standard output.
 --inplace, -i Replace the input file with a sorted version. Warning
 this a potentially destructive operation that may
 move/remove comments.
 -n LINES, --newlines LINES
 Number of lines between stanzas.

In-place update arguments:
 -F, --force Force file sorting for all files, even for files
 containing the special 'KSCONF-NO-SORT' marker.
 -q, --quiet Reduce the output. Reports only updated or invalid
 files. This is useful for pre-commit hooks, for
 example.

ksconf rest-export

usage: ksconf rest-export [-h] [--output FILE] [--disable-auth-output]
 [--pretty-print] [-u | -D] [--url URL] [--app APP]
 [--user USER] [--owner OWNER] [--conf TYPE]
 [--extra-args EXTRA_ARGS]
 CONF [CONF ...]

Build an executable script of the stanzas in a configuration file that can be later applied to
a running Splunk instance via the Splunkd REST endpoint.

This can be helpful when pushing complex props & transforms to an instance where you only have
UI access and can't directly publish an app.

positional arguments:
 CONF Configuration file(s) to export settings from.

optional arguments:
 -h, --help show this help message and exit
 --output FILE, -t FILE
 Save the shell script output to this file. If not
 provided, the output is written to standard output.
 -u, --update Assume that the REST entities already exist. By
 default output assumes stanzas are being created.
 -D, --delete Remove existing REST entities. This is a destructive
 operation. In this mode, stanzas attributes are
 unnecessary and ignored. NOTE: This works for 'local'
 entities only; the default folder cannot be updated.
 --url URL URL of Splunkd. Default: https://localhost:8089
 --app APP Set the namespace (app name) for the endpoint
 --user USER Deprecated. Use --owner instead.
 --owner OWNER Set the object owner. Typically the default of
 'nobody' is ideal if you want to share the
 configurations at the app-level.
 --conf TYPE Explicitly set the configuration file type. By default
 this is derived from CONF, but sometime it's helpful
 set this explicitly. Can be any valid Splunk conf file
 type, example include 'app', 'props', 'tags',
 'savedsearches', and so on.
 --extra-args EXTRA_ARGS
 Extra arguments to pass to all CURL commands. Quote
 arguments on the command line to prevent confusion
 between arguments to ksconf vs curl.

Output Control:
 --disable-auth-output
 Turn off sample login curl commands from the output.
 --pretty-print, -p Enable pretty-printing. Make shell output a bit more
 readable by splitting entries across lines.

ksconf rest-publish

usage: ksconf rest-publish [-h] [--conf TYPE] [-m META] [--url URL]
 [--user USER] [--pass PASSWORD] [-k] [--app APP]
 [--owner OWNER] [--sharing {user,app,global}] [-D]
 CONF [CONF ...]

Publish stanzas in a .conf file to a running Splunk instance via REST. This
requires access to the HTTPS endpoint of splunk. By default, ksconf will
handle both the creation of new stanzas and the update of exists stanzas. This
can be used to push full configuration stanzas where you only have REST access
and can't directly publish an app. Only attributes present in the conf file
are pushed. While this may seem obvious, this fact can have profound
implications in certain situations, like when using this command for
continuous updates. This means that it's possible for the source .conf to
ultimately differ from what ends up on the server's .conf file. One way to
avoid this is to explicitly remove object using '--delete' mode first, and
then insert a new copy of the object. Of course this means that the object
will be unavailable. The other impact is that diffs only compares and shows a
subset of attribute. Be aware that, for consistency, the configs/conf-TYPE
endpoint is used for this command. Therefore, a reload may be required for the
server to use the published config settings.

positional arguments:
 CONF Configuration file(s) to export settings from.

optional arguments:
 -h, --help show this help message and exit
 --conf TYPE Explicitly set the configuration file type. By default
 this is derived from CONF, but sometime it's helpful
 set this explicitly. Can be any valid Splunk conf file
 type, example include 'app', 'props', 'tags',
 'savedsearches', and so on.
 -m META, --meta META Specify one or more '.meta' files to determine the
 desired read & write ACLs, owner, and sharing for
 objects in the CONF file.
 --url URL URL of Splunkd. Default: https://localhost:8089
 --user USER Login username Splunkd. Default: admin
 --pass PASSWORD Login password Splunkd. Default: changeme
 -k, --insecure Disable SSL cert validation.
 --app APP Set the namespace (app name) for the endpoint
 --owner OWNER Set the user who owns the content. The default of
 'nobody' works well for app-level sharing.
 --sharing {user,app,global}
 Set the sharing mode.
 -D, --delete Remove existing REST entities. This is a destructive
 operation. In this mode, stanzas attributes are
 unnecessary. NOTE: This works for 'local' entities
 only; the default folder cannot be updated.

ksconf unarchive

usage: ksconf unarchive [-h] [--dest DIR] [--app-name NAME]
 [--default-dir DIR] [--exclude EXCLUDE] [--keep KEEP]
 [--allow-local]
 [--git-sanity-check {off,changed,untracked,ignored}]
 [--git-mode {nochange,stage,commit}] [--no-edit]
 [--git-commit-args GIT_COMMIT_ARGS]
 SPL

Install or overwrite an existing app in a git-friendly way.
If the app already exist, steps will be taken to upgrade it safely.

The 'default' folder can be redirected to another path (i.e., 'default.d/10-upstream' or
other desirable path if you're using the 'ksconf combine' tool to manage extra layers.)

positional arguments:
 SPL The path to the archive to install.

optional arguments:
 -h, --help show this help message and exit
 --dest DIR Set the destination path where the archive will be
 extracted. By default the current directory is used,
 but sane values include etc/apps, etc/deployment-apps,
 and so on.
 --app-name NAME The app name to use when expanding the archive. By
 default, the app name is taken from the archive as the
 top-level path included in the archive (by
 convention).
 --default-dir DIR Name of the directory where the default contents will
 be stored. This is a useful feature for apps that use
 a dynamic default directory that's created and managed
 by the 'combine' mode.
 --exclude EXCLUDE, -e EXCLUDE
 Add a file pattern to exclude from extraction.
 Splunk's pseudo-glob patterns are supported here. '*'
 for any non-directory match, '...' for ANY (including
 directories), and '?' for a single character.
 --keep KEEP, -k KEEP Specify a pattern for files to preserve during an
 upgrade. Repeat this argument to keep multiple
 patterns.
 --allow-local Allow local/* and local.meta files to be extracted
 from the archive.
 --git-sanity-check {off,changed,untracked,ignored}
 By default 'git status' is run on the destination
 folder to detect working tree or index modifications
 before the unarchive process start. Sanity check
 choices go from least restrictive to most thorough:
 'off' prevents all safely checks. 'changed' aborts
 only upon local modifications to files tracked by git.
 'untracked' (the default) looks for changed and
 untracked files. 'ignored' aborts is (any) local
 changes, untracked, or ignored files are found.
 --git-mode {nochange,stage,commit}
 Set the desired level of git integration. The default
 mode is *stage*, where new, updated, or removed files
 are automatically handled for you. To prevent any 'git
 add' or 'git rm' commands from being run, pick the
 'nochange' mode.
 --no-edit Tell git to skip opening your editor on commit. By
 default you will be prompted to review/edit the commit
 message. (Git Tip: Delete the content of the default
 message to abort the commit.)
 --git-commit-args GIT_COMMIT_ARGS, -G GIT_COMMIT_ARGS
 Extra arguments to pass to 'git'

ksconf xml-format

usage: ksconf xml-format [-h] [--indent INDENT] [--quiet] FILE [FILE ...]

Normalize and apply consistent XML indentation and CDATA usage for XML
dashboards and navigation files. Technically this could be used on *any* XML
file, but certain element names specific to Splunk's simple XML dashboards are
handled specially, and therefore could result in unusable results. The
expected indentation level is guessed based on the first element indentation,
but can be explicitly set if not detectable.

positional arguments:
 FILE One or more XML files to check. If '-' is given, then a
 list of files is read from standard input

optional arguments:
 -h, --help show this help message and exit
 --indent INDENT Number of spaces. This is only used if indentation cannot
 be guessed from the existing file.
 --quiet, -q Reduce the volume of output.

Changelog

Note

Changes in master, but not released yet are marked as DRAFT.

Ksconf 0.7.x

New functionality, massive documentation improvements, metadata support, and Splunk app install fixes.

Release v0.7.4 (2019-06-07)

	Inline the six module to avoid elusive bootstrapping cases where the module couldn’t be found.
This primarily impacts pre-commit users.
The ksconf.ext.* prefix is being used for this, and any other inlined third party modules we may need in the future.

	Other minor docs fixes and internal non-visible changes.

Release v0.7.3 (2019-06-05)

	Added the new ksconf xml-format command.

	The ksconf xml-format command brings format consistency to your XML representations of Simple XML dashboards and navigation files by fixing indentation automatically adding <![CDATA[...]]> blocks, as needed, to reduce the need for XML escaping, resulting in more readable source.

	Additionally, a new pre-commit hook named ksconf-xml-format was added to leverage this new functionality. It looks specifically for xml views and navigation files based on path. This may also include Advanced XML, which hasn’t been tested; So if you use Advanced XML, proceed with caution.

	Note that this adds lxml as a packaging dependency which is needed for pre-commit hooks, but not strictly required at run time for other ksconf commands. This is NOT ideal, and may change in the future in attempts to keep ksconf as light-weight and standalone as possible. One possible alternative is setting up a different repo for pre-commit hooks. Python packaging and distribution tips welcome.

	Fixed data loss bug in promote (interactive mode only) and improved some UI text and prompts.

	Fixed colorization of ksconf diff output where certain lines failed to show up in the correct color.

	Fixed bug where debug tracebacks didn’t work correctly on Python 2.7. (Enable using KSCONF_DEBUG=1.)

	Extended the output of ksconf --version to show the names and version of external modules, when present.

	Improved some resource allocation in corner cases.

	Tested with Splunk 7.3 (numeric similarity in version numbers is purely coincidental)

Attention

API BREAKAGE

The DiffOp output values for DIFF_OP_INSERT and DIFF_OP_DELETE have been changed in a backwards-compatible breaking way.
The values of a and b were previously reversed for these two operations, leading to some code confusion.

Release v0.7.2 (2019-03-22)

	Fixed bug where filter would crash when doing stanza matching if global entries were present. Global stanzas can be matched by searching for a stanza named default.

	Fixed broken pre-commit issue that occurred for the v0.7.1 tag. This also kept setup.py from working if the six module wasn’t already installed. Developers and pre-commit users were impacted.

Release v0.7.1 (2019-03-13)

	Additional fixes for UTF-8 BOM files which appear to happen more frequently with local files on Windows.
This time some additional unit tests were added so hopefully there are few regressions in the future.

	Add the ignore-missing argument to ksconf merge to prevent errors when input files are absent.
This allows bashisms Some_App/{{default,local}}/savedsearches.conf to work without errors if the local or default file is missing.

	Check for incorrect environment setup and suggest running sourcing setSplunkEnv to get a working environment.
See #48 [https://github.com/Kintyre/ksconf/issues/48] for more info.

	Minor improvements to some internal error handling, packaging, docs, and troubleshooting code.

Release v0.7.0 (2019-02-27)

Attention

For anyone who installed 0.6.x, we recommend a fresh install of the Splunk app due to packaging changes. This shouldn’t be an issue in the future.

General changes:

	Added new ksconf rest-publish command that supersedes the use of rest-export for nearly every use case. Warning: No unit-testing has been created for this command yet, due to technical hurdles.

	Added Cheat Sheet to the docs.

	Massive doc cleanup of hundreds of typos and many expanded/clarified sections.

	Significant improvement to entrypoint handling and support for conditional inclusion of 3rd party libraries with sane behavior on import errors, and improved warnings. This information is conveniently viewable to the user via ksconf --version.

	Refactored internal diff logic and added additional safeties and unit tests. This includes improvements to TTY colorization which should avoid previous color leaks scenarios that were likely if unhandled exceptions occur.

	New support for metadata handling.

	CLI change for rest-export: The --user argument has been replaced with --owner to keep clean separation between the login account and object owners. (The old argument is still accept for now.)

Splunk app changes:

	Modified installation of python package installation. In previous releases, various .dist-info folders were created with version-specific names leading to a mismatch of package versions after upgrade.
For this reason, we suggest that anyone who previously installed 0.6.x should do a fresh install.

	Changed Splunk app install script to install.py (it was bootstrap_bin.py). Hopefully this is more intuitive.

	Added Windows support to install.py.

	Now includes the Splunk Python SDK. Currently used for rest-publish but will eventually be used for additional functionally unique to the Splunk app.

Ksconf 0.6.x

Add deployment as a Splunk app for simplicity and significant docs cleanup.

Release v0.6.2 (2019-02-09)

	Massive rewrite and restructuring of the docs. Highlights include:

	Reference material has been moved out of the user manual into a different top-level section.

	Many new topics were added, such as

	Ksconf as external difftool

	How Splunk writes to conf files

	Configuration layers

	What’s so important about minimizing files?

	A new approach for CLI documentation. We’re moving away from the WALL OF TEXT thing.
(Yeah, it was really just the output from --help). That was limiting formatting,
linking, and making the CLI output way too long.

	Refreshed Splunk app icons. Add missing alt icon.

	Several minor internal cleanups. Specifically the output of --version had a face lift.

Release v0.6.1 (2019-02-07)

	(Trivial) Fixed some small issues with the Splunk App (online AppInspect)

Release v0.6.0 (2019-02-06)

	Add initial support for building ksconf into a Splunk app.

	App contains a local copy of the docs, helpful for anyone who’s working offline.

	Credit to Sarah Larson for the ksconf logos.

	No ksconf functionality exposed to the Splunk UI at the moment.

	Docs/Sphinx improvements (more coming)

	Begin work on cleaning up API docs.

	Started converting various document pages into reStructuredText for greatly improved docs.

	Improved PDF fonts and fixed a bunch of sphinx errors/warnings.

	Refactored the install docs into 2 parts. With the new ability to install ksconf as a Splunk app
it’s quite likely that most of the wonky corner cases will be less frequently needed, hence all
the more exotic content was moved into the “Advanced Install Guide”, tidying things up.

Ksconf 0.5.x

Add Python 3 support, new commands, support for external command plugins, tox and vagrant for testing.

Release v0.5.6 (2019-02-04)

	Fixes and improvements to the filter command. Found issue with processing from stdin,
inconsistency in some CLI arguments, and finished implementation for various output modes.

	Add logo (fist attempt).

Release v0.5.5 (2019-01-28)

	New ksconf filter command added for slicing up a conf file into smaller pieces. Think of this as
GREP that’s stanza-aware. Can also whitelist or blacklist attributes, if desirable.

	Expanded rest-export CLI capabilities to include a new --delete option, pretty-printing,
and now supports stdin by allowing the user to explicitly set the file type using --conf.

	Refactored all CLI unittests for increased readability and long-term maintenance. Unit tests
now can also be run individually as scripts from the command line.

	Minor tweaks to the snapshot output format, v0.2. This feature is still highly experimental.

Release v0.5.4 (2019-01-04)

	New commands added:

	ksconf snapshot will dump a set of configuration files to a JSON formatted file. This can be used
used for incremental “snapshotting” of running Splunk apps to track changes overtime.

	ksconf rest-export builds a series of custom curl commands that can be used to publish or update
stanzas on a remote instance without file system access. This can be helpful when pushing
configs to Splunk Cloud when all you have is REST (splunkd) access. This command is indented
for interactive admin not batch operations.

	Added the concept of command maturity. A listing is available by running ksconf --version

	Fix typo in KSCONF_DEBUG.

	Resolving some build issues.

	Improved support for development/testing environments using Vagrant (fixes) and Docker (new).
Thanks to Lars Jonsson for these enhancements.

Release v0.5.3 (2018-11-02)

	Fixed bug where ksconf combine could incorrectly order directories on certain file systems
(like ext4), effectively ignoring priorities. Repeated runs may resulted in undefined behavior.
Solved by explicitly sorting input paths forcing processing to be done in lexicographical order.

	Fixed more issues with handling files with BOM encodings. BOMs and encodings in general are NOT
preserved by ksconf. If this is an issue for you, please add an enhancement issue.

	Add Python 3.7 support

	Expand install docs specifically for offline mode and some OS-specific notes.

	Enable additional tracebacks for CLI debugging by setting KSCONF_DEBUG=1 in the environment.

Release v0.5.2 (2018-08-13)

	Expand CLI output for --help and --version

	Internal cleanup of CLI entry point module name. Now the ksconf CLI can be invoked as
python -m ksconf, you know, for anyone who’s into that sort of thing.

	Minor docs and CI/testing improvements.

Release v0.5.1 (2018-06-28)

	Support external ksconf command plugins through custom entry_points, allowing for others to
develop their own custom extensions as needed.

	Many internal changes: Refactoring of all CLI commands to use new entry_points as well as pave
the way for future CLI unittest improvements.

	Docs cleanup / improvements.

Release v0.5.0 (2018-06-26)

	Python 3 support.

	Many bug fixes and improvements resulting from wider testing.

Ksconf 0.4.x

Ksconf 0.4.x switched to a modular code base, added build/release automation, PyPI package
registration (installation via pip install and, online docs.

Release v0.4.10 (2018-06-26)

	Improve file handling to avoid “unclosed file” warnings. Impacted parse_conf(),
write_conf(), and many unittest helpers.

	Update badges to report on the master branch only. (No need to highlight failures on feature or
bug-fix branches.)

Release v0.4.9 (2018-06-05)

	Add some missing docs files

Release v0.4.8 (2018-06-05)

	Massive cleanup of docs: revamped install guide, added ‘standalone’ install procedure and
developer-focused docs. Updated license handling.

	Updated docs configuration to dynamically pull in the ksconf version number.

	Using the classic ‘read-the-docs’ Sphinx theme.

	Added additional PyPi badges to README (GitHub home page).

Release v0.4.4-v0.4.1 (2018-06-04)

	Deployment and install fixes (It’s difficult to troubleshoot/test without making a new release!)

Release v0.4.3 (2018-06-04)

	Rename PyPI package kintyre-splunk-conf

	Add support for building a standalone executable (zipapp).

	Revamp install docs and location

	Add GitHub release for the standalone executable.

Release v0.4.2 (2018-06-04)

	Add readthedocs.io support

Release v0.4.1 (2018-06-04)

	Enable PyPI production package building

Release v0.4.0 (2018-05-19)

	Refactor entire code base. Switched from monolithic all-in-one file to clean-cut modules.

	Versioning is now discoverable via ksconf --version, and controlled via git tags (via
git describe --tags).

Module layout

	ksconf.conf.* - Configuration file parsing, writing, comparing, and so on

	ksconf.util.* - Various helper functions

	ksconf.archive - Support for uncompressing Splunk apps (tgz/zip files)

	ksconf.vc.git - Version control support. Git is the only VC tool supported for now. (Possibly ever)

	ksconf.commands.<CMD> - Modules for specific CLI functions. I may make this extendable, eventually.

Ksconf 0.3.x

First public releases.

Release v0.3.2 (2018-04-24)

	Add AppVeyor for Windows platform testing

	Add codecov integration

	Created ConfFileProxy.dump()

Release v0.3.1 (2018-04-21)

	Setup automation via Travis CI

	Add code coverage

Release v0.3.0 (2018-04-21)

	Switched to semantic versioning.

	0.3.0 feels representative of the code maturity.

Ksconf legacy releases

Ksconf started in a private Kintyre repo. There are no official releases; all git history has been
rewritten.

Release legacy-v1.0.1 (2018-04-20)

	Fixes to blacklist support and many enhancements to ksconf unarchive.

	Introduces parsing profiles.

	Lots of bug fixes to various subcommands.

	Added automatic detection of ‘subcommands’ for CLI documentation helper script.

Release legacy-v1.0.0 (2018-04-16)

	This is the first public release. First work began Nov 2017 (as a simple conf ‘sort’ tool,
which was imported from yet another repo.) Version history was extracted/rewritten/preserved
as much as possible.

	Mostly stable features.

	Unit test coverage over 85%

	Includes pre-commit hook configuration (so that other repos can use this to run ksconf sort
and ksconf check against their conf files.

Known issues

General

	File encoding issues: Byte order markers and specific encodings are NOT preserved.
All files are encoding using UTF-8 upon update, which is Splunk’s expected encoding.

Splunk app

	File cleanup issues after KSCONF app for Splunk upgrades (impacts versions prior to 0.7.0).
Old .dist-info folders or other stale files may be left around after upgrades.
If you encounter this issue, either uninstall and delete the ksconf directory or manually remove the old ‘bin’ folder and (re)upgrade to the latest version.
The fix in 0.7.0 is to remove the version-specific portion of the folder name. (GH issue #37)

See more confirmed bugs [https://github.com/Kintyre/ksconf/labels/bug]
in the issue tracker.

Advanced Installation Guide

The content in this document was split out from the Installation Guide because it became
unruly and the number of possible Python installation combinations and gotchas became very intense.
However, that means that there’s lots of truly helpful stuff in here, but becoming a python
packaging expert isn’t my goal, so the Splunk app install approach was introduced to alleviate much
of this pain.

A portion of this document is targeted at those who can’t install packages as Admin or are forced to
use Splunk’s embedded Python. For everyone else, please start with the one-liner!

Tip

Do any of these words for phrases strike fear in your heart?

	
	pip

	pipenv

	virtualenv

	
	wheel

	pyenv (not the same as pyvenv)

	python2.7 vs python27 vs py -27

	
	PYTHONPATH

	LD_LIBARY

	RedHat Software Collections

If this list seems daunting, head over to Install Splunk App. There’s no shame in it.

Contents

	Advanced Installation Guide

	Flowchart

	Installation

	Install from PyPI with PIP

	Install ksconf into a virtual environment

	Install ksconf system-wide

	CentOS (RedHat derived) distros

	RedHat Software Collections

	Use the standalone executable

	Install the Wheel manually (offline mode)

	Install with Splunk’s Python

	On Linux or Mac

	On Windows

	Offline installation

	Offline installation steps

	Offline installation of pip

	Use pip without installing it

	Frequent gotchas

	PIP Install TLS Error

	No module named ‘command.install’

	Troubleshooting

	Check Python version

	Check PIP Version

	Validate the install

	Resources

Flowchart

(Unfinished; more of a brainstorm at this point…)

	Is Python installed? (OS level)

	Is the version greater than 2.7? (Some early 2.7 version have quarks, but typically this is okay)

	If Python 3.x, is it greater than 3.4? (I’d like to drop 3.4, but lots of old distros still have it.)

	Do you have admin access? (root/Administrator; or can you get it? How hard? Will you need it each time you upgrade the ksconf?)

	Do you already have a large python deployment or dependency? (If so, you’ll probably be fine. Use virtualenv [https://virtualenv.pypa.io/en/stable/])

	Do you have any prior Python packaging or administration experience?

	Are you dealing with some vendor-specific solution?

	Example: RedHat Software Collections – where they realize there software is way too old, so
they try to make it possible to install newer version of things like Python, but since they
aren’t native or the default, you still end up jumping through a bunch of wonky hoops)

	Do you have Internet connectivity? (air gap or blocked outbound traffic, or proxy)

	Do you want to build/deploy your own ksconf extensions? If so, the python package is a better option.
(But at that point, you can probably already handle any packaging issues yourself.)

Installation

There are several ways to install ksconf. Technically all standard python packaging approaches
should work just fine, there’s no compiled code or external run-time dependencies so installation
is fairly easy, but for non-python developers there are some gotchas. Installation options are
listed from the most easy and recommended to more obscure and difficult:

Install from PyPI with PIP

The preferred installation method is to install via the standard Python package tool pip. Ksconf
can be installed via the registered kintyre-splunk-conf [https://pypi.org/project/kintyre-splunk-conf] package using the standard python process.

There are 2 popular variations, depending on whether or not you would like to install for all users
or just play around with it locally.

Install ksconf into a virtual environment

Use this option if you don’t have admin access

Installing ksconf with virtualenv [https://virtualenv.pypa.io/en/stable/] is a great way to test the tool without requiring admin
privileges and has many advantages for a production install too. Here are the basic steps to get
started.

Please change venv to a suitable path for your environment.

Install Python virtualenv package (if not already installed)
pip install virtualenv

Create and activte new 'venv' virtual environment
virtualenv venv
source venv/bin/activate

pip install kintyre-splunk-conf

Note

Windows users

The above virtual environment activation should be run as venv\Scripts\activate.bat.

Install ksconf system-wide

Important

This requires admin access.

This is the absolute easiest install method where ‘ksconf’ is available to all users on the system
but it requires root access and pip must be installed and up-to-date.

On Mac or Linux, run:

sudo pip install kintyre-splunk-conf

On Windows, run this commands from an Administrator console.

pip install kintyre-splunk-conf

CentOS (RedHat derived) distros

Enable the EPEL repo so that `pip` can be installed.
sudo yum install -y epel-release

Install pip
sudo yum install -y python-pip

Install ksconf (globally, for all users)
sudo pip install kintyre-splunk-conf

RedHat Software Collections

The following assumes the python27 software collection, but other version of Python are supported
too. The initial setup and deployment of Software Collections is beyond the scope of this doc.

sudo scl enable python27 python -m pip install kintyre-splunk-conf

Hint

Missing pip?

If pip is missing from a RHSC then install the following rpm.

yum install python27-python-pip

Unfortunately, the ksconf entrypoint script (in the bin folder) will not work correctly on it’s
own because it doesn’t know about the scl environment, nor is it in the default PATH. To solve this
run the following:

sudo cat > /usr/local/bin/ksconf <<HERE
#!/bin/sh
source scl_source enable python27
exec /opt/rh/python27/root/usr/bin/ksconf "$@"
HERE
chmod +x /usr/local/bin/ksconf

Use the standalone executable

Deprecated since version 0.6.0: This option remains for historical reference and will like be disabled in the future. If
this seems like the best option to you, then please consider install the KSCONF App for Splunk [https://splunkbase.splunk.com/app/4383/] instead.

Ksconf can be installed as a standalone executable zip app. This approach still requires a python
interpreter to be present either from the OS or the one embedded with Splunk Enterprise. This works
well for testing or when all other options fail.

From the GitHub releases [https://github.com/Kintyre/ksconf/releases/latest] page, grab the file name ksconf-*.pyz, download it, copy
it to a bin folder in your PATH and rename it ksconf. The default shebang looks for ‘python’ in
the PATH, but this can be adjusted as needed. Since installing with Splunk is a common use case, a
second file named ksconf-*-splunk.pyz already has the shebang set for the standard /opt/splunk
install path.

Typical embedded Splunk install example:

VER=0.5.0
curl https://github.com/Kintyre/ksconf/releases/download/v${VER}/ksconf-${VER}-splunk.pyz
mv ksconf-${VER}-splunk.pyz /opt/splunk/bin/
cd /opt/splunk/bin
ln -sf ksconf-${VER}-splunk.pyz ksconf
chmod +x ksconf
ksconf --version

Reasons why this is a non-ideal install approach:

	Lower performance since all python files live in a zip file, and pre-compiled version’s can be
cached.

	No standard install pathway (doesn’t use pip); user must manually copy the executable into place.

	Uses a non-standard build process. (May not be a big deal, but could cause things to break in
the future.)

Install the Wheel manually (offline mode)

Download the latest “Wheel” file file from PyPI, copy it to the destination server
and install with pip.

Offline pip install:

pip install ~/Downloads/kintyre-splunk-conf-0.4.2-py2.py3-none-any.whl

Install with Splunk’s Python

Deprecated since version 0.6.0: Don’t do this anymore. Please use the KSCONF App for Splunk [https://splunkbase.splunk.com/app/4383/] instead.

Splunk Enterprise 6.x and later installs an embedded Python 2.7 environment.
However, Splunk does not provide packing tools (such as pip or the distutils standard library
which is required to bootstrap install pip). For these reasons, it’s typically easier and cleaner
to install ksconf with the system provided Python. However, sometimes the system-provided Python
environment is the wrong version, is missing (like on Windows), or security restrictions prevent the
installation of additional packages. In such cases, Splunk’s embedded Python becomes a beacon of
hope.

On Linux or Mac

Download the latest “Wheel” file file from PyPI. The path to this download will be
set in the pkg variable as shown below.

Setup the shell:

export SPLUNK_HOME=/opt/splunk
export pkg=~/Downloads/kintyre_splunk_conf-0.4.9-py2.py3-none-any.whl

Run the following:

cd $SPLUNK_HOME
mkdir Kintyre
cd Kintyre
Unzip the 'kconf' folder into SPLUNK_HOME/Kintyre
unzip "$pkg"

cat > $SPLUNK_HOME/bin/ksconf <<HERE
#!/bin/sh
export PYTHONPATH=$PYTHONPATH:$SPLUNK_HOME/Kintyre
exec $SPLUNK_HOME/bin/python -m ksconf \$*
HERE
chmod +x $SPLUNK_HOME/bin/ksconf

Test the install:

ksconf --version

On Windows

	Open a browser and download the latest “Wheel” file file from PyPI.

	Rename the .whl extension to .zip. (This may require showing file extensions in Explorer.)

	Extract the zip file to a temporary folder. (This should create a folder named “ksconf”)

	Create a new folder called “Kintyre” under the Splunk installation path (aka SPLUNK_HOME)
By default this is C:\Program Files\Splunk.

	Copy the “ksconf” folder to %SPLUNK_HOME%\Kintyre.

	Create a new batch file called ksconf.bat and paste in the following. Be sure to
adjust for a non-standard %SPLUNK_HOME% value, if necessary.

@echo off
SET SPLUNK_HOME=C:\Program Files\Splunk
SET PYTHONPATH=%SPLUNK_HOME%\bin;%SPLUNK_HOME%\Python-2.7\Lib\site-packages\win32;%SPLUNK_HOME%\Python-2.7\Lib\site-packages;%SPLUNK_HOME%\Python-2.7\Lib
SET PYTHONPATH=%PYTHONPATH%;%SPLUNK_HOME%\Kintyre
CALL "%SPLUNK_HOME%\bin\python.exe" -m ksconf %*

	Move ksconf.bat to the Splunk\bin folder. (This assumes that %SPLUNK_HOME%/bin is part of
your %PATH%. If not, add it, or find an appropriate install location.)

	Test this by running ksconf --version from the command line.

Offline installation

Installing ksconf to an offline or network restricted computer requires three steps: (1) download
the latest packages from the Internet to a staging location, (2) transfer the staged content (often
as a zip file) to the restricted host, and (3) use pip to install packages from the staged copy.
Fortunately, pip makes offline workflows quite easy to achieve. Pip can download a python package
with all dependencies stored as wheels files into a single directory, and pip can be told to install
from that directory instead of attempting to talk to the Internet.

The process of transferring these files is very organization-specific. The example below shows the
creation of a tarball (since tar is universally available on Unix systems), but any acceptable
method is fine. If security is a high concern, this step is frequently where safety checks are
implemented. For example, antivirus scans, static code analysis, manual inspection, and/or
comparison of cryptographic file hashes.

One additional use-case for this workflow is to ensure the exact same version of all packages are
deployed consistently across all servers and environments. Often building a requirements.txt file
with pip freeze is a more appropriate solution. Or consider using pipenv lock for even more
security benefits.

Offline installation steps

Important

Pip must be installed on the destination server for this process to work. If pip is NOT installed
see the Offline installation of pip section below.

Step 1: Use pip to download the latest package and their dependencies. Be sure to use the same
version of python that is running on destination machine

download packages
python2.7 -m pip download -d ksconf-packages kintyre-splunk-conf

A new directory named ‘ksconf-packages’ will be created and will contain the necessary *.whl files.

Step 2: Transfer the directory or archive to the remote computer. Insert whatever security and
file copy procedures necessary for your organization.

Compress directory (on staging computer)
tar -czvf ksconf-packages.tgz ksconf-packages

Copy file using whatever means
scp ksconf-packages.tgz user@server:/tmp/ksconf-packages.tgz

Extract the archive (on destination server)
tar -xzvf ksconf-packages.tgz

Step 3:

Install ksconf package with pip
pip install --no-index --find-links=ksconf-packages kntyre-splunk-conf

Test the installation
ksconf --version

The ksconf-packages folder can now safely be removed.

Offline installation of pip

Use the recommended pip install procedures listed elsewhere if possible. But if a remote
bootstrap of pip is your only option, then here are the steps. (This process mirrors the steps
above and can be combined, if needed.)

Step 1: Fetch bootstrap script and necessary wheels

mkdir ksconf-packages
curl https://bootstrap.pypa.io/get-pip.py -o ksconf-packages/get-pip.py
python2.7 -m pip download -d /tmp/my_packages pip setuptools wheel

The ksconf-pacakges folder should contain 1 script, and 3 wheel (*.whl) files.

Step 2: Archive and/or copy to offline server

Step 3: Bootstrap pip

sudo python get-pip.py --no-index --find-links=ksconf-packages/

Test with
pip --version

Use pip without installing it

If you have a copy of the pip*.whl (wheel) file, then it can be executed directly by python. This
can be used to run pip without actually installing it, or for install pip initially (bypassing the
get-pip.py script step noted above.)

Here’s an example of how this could work:

Step 1: Download the pip wheel on a machine where pip works, by running:

pip download pip -d .

This will create a file like pip-19.0.1-py2.py3-none-any.whl in the current working directory.

Step 2: Copy the pip wheel to another machine (likely where pip isn’t installed.)

Step 3: Execute the wheel by running:

python pip-19.0.1-py2.py3-none-any.whl/pip list

Just substitute the list command with whatever action you need (like install or whatever)

Frequent gotchas

PIP Install TLS Error

If pip throws an error message like the following:

There was a problem confirming the ssl certificate: [SSL: TLSV1_ALERT_PROTOCOL_VERSION] tlsv1 alert protocol version
...
No matching distribution found for setuptools

The problem is likely caused by changes to PyPI website in April 2018 when support for TLS v1.0 and
1.1 were removed. Downloading new packages requires upgrading to a new version of pip. Like so:

Upgrade pip as follows:

curl https://bootstrap.pypa.io/get-pip.py | python

Note: Use sudo python above if not in a virtual environment.

Helpful links:

	Not able to install Python packages [SSL: TLSV1_ALERT_PROTOCOL_VERSION] [https://stackoverflow.com/a/49769015/315892]

	‘pip install’ fails for every package (“Could not find a version that satisfies the requirement”) [https://stackoverflow.com/a/49748494/315892]

No module named ‘command.install’

If, while trying to install pip or run a pip command you see the following error:

ImportError: No module named command.install

Likely this is because you are using a crippled version of Python; like the one that ships with
Splunk. This won’t work. Either get a pre-package version (the .pyz file or install using the
OS-level Python.

Troubleshooting

Here are a few fact gathering type commands that may help you begin to track down problems.

Check Python version

Check your installed python version by running:

python --version

Note that Linux distributions and Mac OS X that ship with multiple version of Python may have
renamed this to python2, python2.7 or similar.

Check PIP Version

pip --version

If you are running a different python interpreter version, you can instead run this as:

python2.7 -m pip --version

Validate the install

Confirm installation with the following command:

ksconf --version

If this works, it means that ksconf installed and is part of your PATH and should be useable
everywhere in your system. Go forth and conquer!

If this doesn’t work here are a few things to try:

	Check that your PATH is set correctly.

	Try running ksconf as a “module” (sometimes works around a PATH issue). Run python -m ksconf

	If you’re running the Splunk app, try running the following:

cd $SPLUNK_HOME/etc/apps/ksconf/bin/lib
python -m ksconf --version

If this works, then the issue has something to do with your path.

It may be helpful to uninstall (remove) the Splunk app and reinstall from scratch.

Resources

	Python packaging [https://docs.python.org/3/installing/index.html] docs provide a general overview on installing Python
packages, how to install per-user vs install system-wide.

	Install PIP [https://pip.pypa.io/en/stable/installing/] docs explain how to bootstrap or upgrade
pip the Python packaging tool. Recent versions of Python come with this by default, but
releases before Python 2.7.9 do not.

License

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 Copyright 2019 Kintyre

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

API Reference

Note

As of now, no assumptions should be made about APIs remaining stable

KSCONF is first and foremost a CLI tool, so backwards incompatible changes are more of a concern for CLI breakage than for API breakage.
That being said, there are a number of helpful features in the core ksconf python module.
So if anyone is interested in using the API, please feel free to do so, but let me know how you are using it and we’ll find a way to keep the important bits stable.
I’d love to make it more clear what APIs are stable and which are likely to change.

As of right now, the general rule of thumb is this:
Anything well-covered by the unit tests should be be fairly safe to build on top of, but again, ping me.

	ksconf
	Subpackages
	ksconf.commands package
	Module contents

	ksconf.conf package
	Submodules

	ksconf.conf.delta module

	ksconf.conf.merge module

	ksconf.conf.parser module

	Module contents

	ksconf.util package
	Submodules

	ksconf.util.compare module

	ksconf.util.completers module

	ksconf.util.file module

	ksconf.util.rest module

	ksconf.util.terminal module

	Module contents

	ksconf.vc package
	Submodules

	ksconf.vc.git module

	Module contents

	Submodules

	ksconf.archive module

	ksconf.consts module

	ksconf.setup_entrypoints module

	Module contents

ksconf

Subpackages

	ksconf.commands package
	Module contents

	ksconf.conf package
	Submodules

	ksconf.conf.delta module

	ksconf.conf.merge module

	ksconf.conf.parser module

	Module contents

	ksconf.util package
	Submodules

	ksconf.util.compare module

	ksconf.util.completers module

	ksconf.util.file module

	ksconf.util.rest module

	ksconf.util.terminal module

	Module contents

	ksconf.vc package
	Submodules

	ksconf.vc.git module

	Module contents

Submodules

ksconf.archive module

	
ksconf.archive.GenArchFile

	alias of ksconf.archive.GenericArchiveEntry

	
ksconf.archive.extract_archive(archive_name, extract_filter=None)

	

	
ksconf.archive.gaf_filter_name_like(pattern)

	

	
ksconf.archive.gen_arch_file_remapper(iterable, mapping)

	

	
ksconf.archive.sanity_checker(interable)

	

ksconf.consts module

ksconf.setup_entrypoints module

Defines all command prompt entry points for CLI actions

This is a silly hack that serves 2 purposes:

	It works around an apparent Python 3.4/3.5 bug on Windows where [options.entry_point] in
setup.cfg is ignored hence ‘ksconf’ isn’t installed as a console script and custom ksconf_*
entry points are not available. (So no CLI commands are available)

	
	It allows for fallback mechanism when

	
	running unit tests (can happen before install)

	if entrypoints or pkg_resources are not available at run time (Splunk’s embedded python)

	
class ksconf.setup_entrypoints.Ep(name, module_name, object_name)

	Bases: tuple

	
module_name

	Alias for field number 1

	
name

	Alias for field number 0

	
object_name

	Alias for field number 2

	
class ksconf.setup_entrypoints.LocalEntryPoint(data)

	Bases: object

Bare minimum stand-in for entrypoints.EntryPoint

	
load()

	

	
ksconf.setup_entrypoints.debug()

	

	
ksconf.setup_entrypoints.get_entrypoints_fallback(group)

	

	
ksconf.setup_entrypoints.get_entrypoints_setup()

	

Module contents

ksconf - Kintyre Splunk CONFig tool

Design goals:

	Multi-purpose go-to .conf tool.

	Dependability

	Simplicity

	No eternal dependencies (single source file, if possible; or packable as single file.)

	Stable CLI

	Good scripting interface for deployment scripts and/or git hooks

	
exception ksconf.KsconfPluginWarning

	Bases: Warning

ksconf.commands package

Module contents

	
class ksconf.commands.KsconfCmd(name)

	Bases: object

Ksconf command specification base class.

	
add_parser(subparser)

	

	
description = None

	

	
format = 'default'

	

	
help = None

	

	
launch(args)

	Handle flow control between pre_run() / run() / post_run()

	
maturity = 'alpha'

	

	
parse_conf(path, mode='r', profile=None, raw_exec=False)

	

	
post_run(args, exec_info=None)

	Any custom clean up work that needs done. Always called if run() was. Presence of
exc_info indicates failure.

	
pre_run(args)

	Pre-run hook. Any exceptions here prevent run() from being called.

	
register_args(parser)

	This function in passed the

	
run(args)

	Actual works happens here. Return code should be an EXIT_CODE_* from consts.

	
version_extra = None

	

	
class ksconf.commands.ConfDirProxy(name, mode, parse_profile=None)

	Bases: object

	
get_file(relpath)

	

	
class ksconf.commands.ConfFileProxy(name, mode, stream=None, parse_profile=None, is_file=None)

	Bases: object

	
close()

	

	
data

	

	
dump(data, **kwargs)

	

	
exists()

	

	
is_file()

	

	
load(profile=None)

	

	
readable()

	

	
reset()

	

	
set_parser_option(**kwargs)

	Setting a key to None will remove that setting.

	
stream

	

	
unlink()

	

	
writable()

	

	
class ksconf.commands.ConfFileType(mode='r', action='open', parse_profile=None, accept_dir=False)

	Bases: object

Factory for creating conf file object types; returns a lazy-loader ConfFile proxy class

Started from argparse.FileType() and then changed everything. With our use case, it’s often
necessary to delay writing, or read before writing to a conf file (depending on weather or not
–dry-run mode is enabled, for example.)

Instances of FileType are typically passed as type= arguments to the
ArgumentParser add_argument() method.

	Parameters

	
	mode (str) – How the file is to be opened. Accepts “r”, “w”, and “r+”.

	action (str) – Determine how much work should be handled during argument parsing vs handed off
to the caller. Supports ‘none’, ‘open’, ‘load’. Full descriptions below.

	parse_profile – parsing configuration settings passed along to the parser

	accept_dir (bool) – Should the CLI accept a directory of config files instead of an
individual file. Defaults to False.

Values for action

	Action

	Description

	none

	No preparation or testing is done on the filename.

	open

	Ensure the file exists an can be opened.

	load

	Ensure the file can be opened and parsed successfully.

Once invoked, instances of this class will return a ConfFileProxy object, or a
ConfDirProxy object if a directory is passed in via the CLI.

	
ksconf.commands.dedent(text)

	Remove any common leading whitespace from every line in text.

This can be used to make triple-quoted strings line up with the left
edge of the display, while still presenting them in the source code
in indented form.

Note that tabs and spaces are both treated as whitespace, but they
are not equal: the lines ” hello” and “thello” are
considered to have no common leading whitespace. (This behaviour is
new in Python 2.5; older versions of this module incorrectly
expanded tabs before searching for common leading whitespace.)

	
ksconf.commands.get_all_ksconf_cmds(on_error='warn')

	

	
ksconf.commands.get_entrypoints

	

	
ksconf.commands.add_splunkd_access_args(parser)

	

	
ksconf.commands.add_splunkd_namespace(parser)

	

ksconf.conf package

Submodules

ksconf.conf.delta module

	
class ksconf.conf.delta.DiffGlobal(type)

	Bases: tuple

	
type

	Alias for field number 0

	
class ksconf.conf.delta.DiffHeader(name, mtime=None)

	Bases: object

	
detect_mtime()

	

	
class ksconf.conf.delta.DiffOp(tag, location, a, b)

	Bases: tuple

	
a

	Alias for field number 2

	
b

	Alias for field number 3

	
location

	Alias for field number 1

	
tag

	Alias for field number 0

	
class ksconf.conf.delta.DiffStanza(type, stanza)

	Bases: tuple

	
stanza

	Alias for field number 1

	
type

	Alias for field number 0

	
class ksconf.conf.delta.DiffStzKey(type, stanza, key)

	Bases: tuple

	
key

	Alias for field number 2

	
stanza

	Alias for field number 1

	
type

	Alias for field number 0

	
ksconf.conf.delta.compare_cfgs(a, b, allow_level0=True)

	Return list of 5-tuples describing how to turn a into b.

Note

The Opcode tags borrowed from SequenceMatcher class in the difflib
standard Python module.

Each tuple takes the form:

(tag, location, a, b)

tag:

	Value

	Meaning

	‘replace’

	same element in both, but different values.

	‘delete’

	remove value b

	‘insert’

	insert value a

	‘equal’

	same values in both

location is a tuple that can take the following forms:

	Tuple form

	Description

	(0)

	Global file level context (e.g., both files are the same)

	(1, stanza)

	Stanzas are the same, or completely different (no shared keys)

	(2, stanza, key)

	Key level, indicating

Possible alternatives:

https://dictdiffer.readthedocs.io/en/latest/#dictdiffer.patch

	
ksconf.conf.delta.compare_stanzas(a, b, stanza_name)

	

	
ksconf.conf.delta.is_equal(delta)

	Is the delta output show that the compared objects are identical

	
ksconf.conf.delta.reduce_stanza(stanza, keep_attrs)

	Pre-process a stanzas so that only a common set of keys will be compared.
:param stanza: Stanzas containing attributes and values
:type stanza: dict
:param keep_attrs: Listing of
:type keep_attrs: (list, set, tuple, dict)
:return: a reduced copy of stanza.

	
ksconf.conf.delta.show_diff(stream, diffs, headers=None)

	

	
ksconf.conf.delta.show_text_diff(stream, a, b)

	

	
ksconf.conf.delta.summarize_cfg_diffs(delta, stream)

	Summarize a delta into a human readable format. The input delta is in the format
produced by the compare_cfgs() function.

ksconf.conf.merge module

	
ksconf.conf.merge.merge_conf_dicts(*dicts)

	

	
ksconf.conf.merge.merge_conf_files(dest, configs, dry_run=False, banner_comment=None)

	

ksconf.conf.parser module

Parse and write Splunk’s .conf files

According to this doc:

https://docs.splunk.com/Documentation/Splunk/7.2.3/Admin/Howtoeditaconfigurationfile

	Comments must start at the beginning of a line (#)

	Comments may not be after a stanza name or on an attribute’s value

	Supporting encoding is UTF-8 (and therefore ASCII too)

	
exception ksconf.conf.parser.ConfParserException

	Bases: Exception

	
exception ksconf.conf.parser.DuplicateKeyException

	Bases: ksconf.conf.parser.ConfParserException

	
exception ksconf.conf.parser.DuplicateStanzaException

	Bases: ksconf.conf.parser.ConfParserException

	
class ksconf.conf.parser.Token

	Bases: object

Immutable token object. deepcopy returns the same object

	
ksconf.conf.parser.conf_attr_boolean(value)

	

	
ksconf.conf.parser.cont_handler(iterable, continue_re=re.compile('^(.*)\\\\$'), breaker='\n')

	Look for trailing backslashes (“\”) which indicate a value for an attribute is split across
multiple lines. This function will group such lines together, and pass all other lines through
as-is. Note that the continuation character must be the very last character on the line,
trailing whitespace is not allowed.

	Parameters

	
	iterable (iter) – lines from a configuration file

	continue_re – regular expression to detect the continuation character

	breaker – joining string when combining continued lines into a single string.
Default ‘\n’

	Returns

	lines of text

	Return type

	str

	
ksconf.conf.parser.detect_by_bom(path)

	

	
ksconf.conf.parser.inject_section_comments(section, prepend=None, append=None)

	

	
ksconf.conf.parser.parse_conf(stream, profile={'dup_key': 'overwrite', 'dup_stanza': 'exception', 'keep_comments': True, 'strict': True}, encoding=None)

	Parse a .conf file. This is a wrapper around parse_conf_stream() that allows filenames
or stream to be passed in.

	Parameters

	
	stream (str, file) – the path to a configuration file or open file-like object to be parsed

	profile – parsing configuration settings

	encoding – Defaults to the system default, “uft-8”

	Returns

	a mapping of the stanza and attributes. The resulting output is accessible as [stanaza][attribute] -> value

	Return type

	dict

	
ksconf.conf.parser.parse_conf_stream(stream, keys_lower=False, handle_conts=True, keep_comments=False, dup_stanza='exception', dup_key='overwrite', strict=False)

	

	
ksconf.conf.parser.section_reader(stream, section_re=re.compile('^[\\s\\t]*\\[(.*)\\]\\s*$'))

	This generator break a configuration file stream into sections. Each section contains a name
and a list of text lines held within that section.

Sections that have no entries may be dropped. Any lines before the first section are send back
with the section name of None.

	Parameters

	
	stream (file) – configuration file input stream

	section_re – regular expression for detecting stanza headers

	Returns

	sections in the form of (section_name, lines_of_text)

	Return type

	tuple

	
ksconf.conf.parser.smart_write_conf(filename, conf, stanza_delim='\n', sort=True, temp_suffix='.tmp')

	

	
ksconf.conf.parser.splitup_kvpairs(lines, comments_re=re.compile('^\\s*[#;]'), keep_comments=False, strict=False)

	Break up ‘attribute=value’ entries in a configuration file.

	Parameters

	
	lines (iter) – the body of a stanza containing associated attributes and values

	comments_re – Regular expression used to detect comments.

	keep_comments (bool, optional) – Should comments be preserved in the output. Defaults to False.

	strict (bool, optional) – Should unknown content in the stanza stop processing. Defaults to False allowing “junk” to be silently ignored allowing for a best-effort parse.

	Returns

	iterable of (attribute,value) tuples

	
ksconf.conf.parser.write_conf(stream, conf, stanza_delim='\n', sort=True)

	

	
ksconf.conf.parser.write_conf_stream(stream, conf, stanza_delim='\n', sort=True)

	

Module contents

ksconf.util package

Submodules

ksconf.util.compare module

	
ksconf.util.compare.file_compare(fn1, fn2)

	

	
ksconf.util.compare.fileobj_compare(f1, f2)

	

ksconf.util.completers module

	
ksconf.util.completers.DirectoriesCompleter(*args, **kwargs)

	

	
ksconf.util.completers.FilesCompleter(*args, **kwargs)

	

	
ksconf.util.completers.autocomplete(*args, **kwargs)

	

ksconf.util.file module

	
class ksconf.util.file.ReluctantWriter(path, *args, **kwargs)

	Bases: object

Context manager to intelligently handle updates to an existing file. New content is written
to a temp file, and then compared to the current file’s content. The file file will be
overwritten only if the contents changed.

	
ksconf.util.file.dir_exists(directory)

	Ensure that the directory exists

	
ksconf.util.file.file_fingerprint(path, compare_to=None)

	

	
ksconf.util.file.file_hash(path, algorithm='sha256')

	

	
ksconf.util.file.match_bwlist(value, bwlist, escape=True)

	

	
ksconf.util.file.relwalk(top, topdown=True, onerror=None, followlinks=False)

	Relative path walker
Like os.walk() except that it doesn’t include the “top” prefix in the resulting ‘dirpath’.

	
ksconf.util.file.smart_copy(src, dest)

	Copy (overwrite) file only if the contents have changed.

ksconf.util.rest module

	
ksconf.util.rest.build_rest_namespace(base, owner=None, app=None)

	

	
ksconf.util.rest.build_rest_url(base, service, owner=None, app=None)

	

ksconf.util.terminal module

	
class ksconf.util.terminal.TermColor(stream)

	Bases: object

Simple color setting helper class that’s a context manager wrapper around a stream.
This ensure that the color is always reset at the end of a session.

	
color(*codes)

	

	
reset()

	

	
write(content)

	

	
ksconf.util.terminal.tty_color(stream, *codes)

	

Module contents

	
ksconf.util.debug_traceback()

	If the ‘KSCONF_DEBUG’ environmental variable is set, then show a stack trace.

ksconf.vc package

Submodules

ksconf.vc.git module

	
class ksconf.vc.git.GitCmdOutput(cmd, returncode, stdout, stderr, lines)

	Bases: tuple

	
cmd

	Alias for field number 0

	
lines

	Alias for field number 4

	
returncode

	Alias for field number 1

	
stderr

	Alias for field number 3

	
stdout

	Alias for field number 2

	
ksconf.vc.git.git_cmd(args, shell=False, cwd=None, capture_std=True, encoding='utf-8')

	

	
ksconf.vc.git.git_cmd_iterable(args, iterable, cwd=None, cmd_len=1024)

	

	
ksconf.vc.git.git_is_clean(path=None, check_untracked=True, check_ignored=False)

	

	
ksconf.vc.git.git_is_working_tree(path=None)

	

	
ksconf.vc.git.git_ls_files(path, *modifiers)

	

	
ksconf.vc.git.git_status_summary(path)

	

	
ksconf.vc.git.git_status_ui(path, *args)

	

Module contents

 Python Module Index

 k

 		 	

 		
 k	

 	[image: -]
 	
 ksconf	

 	
 	
 ksconf.archive	

 	
 	
 ksconf.commands	

 	
 	
 ksconf.conf	

 	
 	
 ksconf.conf.delta	

 	
 	
 ksconf.conf.merge	

 	
 	
 ksconf.conf.parser	

 	
 	
 ksconf.consts	

 	
 	
 ksconf.setup_entrypoints	

 	
 	
 ksconf.util	

 	
 	
 ksconf.util.compare	

 	
 	
 ksconf.util.completers	

 	
 	
 ksconf.util.file	

 	
 	
 ksconf.util.rest	

 	
 	
 ksconf.util.terminal	

 	
 	
 ksconf.vc	

 	
 	
 ksconf.vc.git	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	a (ksconf.conf.delta.DiffOp attribute)

 	add_parser() (ksconf.commands.KsconfCmd method)

 	
 	add_splunkd_access_args() (in module ksconf.commands)

 	add_splunkd_namespace() (in module ksconf.commands)

 	autocomplete() (in module ksconf.util.completers)

B

 	
 	b (ksconf.conf.delta.DiffOp attribute)

 	
 	build_rest_namespace() (in module ksconf.util.rest)

 	build_rest_url() (in module ksconf.util.rest)

C

 	
 	close() (ksconf.commands.ConfFileProxy method)

 	cmd (ksconf.vc.git.GitCmdOutput attribute)

 	color() (ksconf.util.terminal.TermColor method)

 	compare_cfgs() (in module ksconf.conf.delta)

 	compare_stanzas() (in module ksconf.conf.delta)

 	
 	conf_attr_boolean() (in module ksconf.conf.parser)

 	ConfDirProxy (class in ksconf.commands)

 	ConfFileProxy (class in ksconf.commands)

 	ConfFileType (class in ksconf.commands)

 	ConfParserException

 	cont_handler() (in module ksconf.conf.parser)

D

 	
 	data (ksconf.commands.ConfFileProxy attribute)

 	debug() (in module ksconf.setup_entrypoints)

 	debug_traceback() (in module ksconf.util)

 	dedent() (in module ksconf.commands)

 	description (ksconf.commands.KsconfCmd attribute)

 	detect_by_bom() (in module ksconf.conf.parser)

 	detect_mtime() (ksconf.conf.delta.DiffHeader method)

 	DiffGlobal (class in ksconf.conf.delta)

 	
 	DiffHeader (class in ksconf.conf.delta)

 	DiffOp (class in ksconf.conf.delta)

 	DiffStanza (class in ksconf.conf.delta)

 	DiffStzKey (class in ksconf.conf.delta)

 	dir_exists() (in module ksconf.util.file)

 	DirectoriesCompleter() (in module ksconf.util.completers)

 	dump() (ksconf.commands.ConfFileProxy method)

 	DuplicateKeyException

 	DuplicateStanzaException

E

 	
 	Ep (class in ksconf.setup_entrypoints)

 	
 	exists() (ksconf.commands.ConfFileProxy method)

 	extract_archive() (in module ksconf.archive)

F

 	
 	file_compare() (in module ksconf.util.compare)

 	file_fingerprint() (in module ksconf.util.file)

 	file_hash() (in module ksconf.util.file)

 	
 	fileobj_compare() (in module ksconf.util.compare)

 	FilesCompleter() (in module ksconf.util.completers)

 	format (ksconf.commands.KsconfCmd attribute)

G

 	
 	gaf_filter_name_like() (in module ksconf.archive)

 	gen_arch_file_remapper() (in module ksconf.archive)

 	GenArchFile (in module ksconf.archive)

 	get_all_ksconf_cmds() (in module ksconf.commands)

 	get_entrypoints (in module ksconf.commands)

 	get_entrypoints_fallback() (in module ksconf.setup_entrypoints)

 	get_entrypoints_setup() (in module ksconf.setup_entrypoints)

 	get_file() (ksconf.commands.ConfDirProxy method)

 	
 	git_cmd() (in module ksconf.vc.git)

 	git_cmd_iterable() (in module ksconf.vc.git)

 	git_is_clean() (in module ksconf.vc.git)

 	git_is_working_tree() (in module ksconf.vc.git)

 	git_ls_files() (in module ksconf.vc.git)

 	git_status_summary() (in module ksconf.vc.git)

 	git_status_ui() (in module ksconf.vc.git)

 	GitCmdOutput (class in ksconf.vc.git)

H

 	
 	help (ksconf.commands.KsconfCmd attribute)

I

 	
 	inject_section_comments() (in module ksconf.conf.parser)

 	
 	is_equal() (in module ksconf.conf.delta)

 	is_file() (ksconf.commands.ConfFileProxy method)

K

 	
 	key (ksconf.conf.delta.DiffStzKey attribute)

 	ksconf (module)

 	ksconf.archive (module)

 	ksconf.commands (module)

 	ksconf.conf (module)

 	ksconf.conf.delta (module)

 	ksconf.conf.merge (module)

 	ksconf.conf.parser (module)

 	ksconf.consts (module)

 	ksconf.setup_entrypoints (module)

 	
 	ksconf.util (module)

 	ksconf.util.compare (module)

 	ksconf.util.completers (module)

 	ksconf.util.file (module)

 	ksconf.util.rest (module)

 	ksconf.util.terminal (module)

 	ksconf.vc (module)

 	ksconf.vc.git (module)

 	KsconfCmd (class in ksconf.commands)

 	KsconfPluginWarning

L

 	
 	launch() (ksconf.commands.KsconfCmd method)

 	lines (ksconf.vc.git.GitCmdOutput attribute)

 	load() (ksconf.commands.ConfFileProxy method)

 	(ksconf.setup_entrypoints.LocalEntryPoint method)

 	
 	LocalEntryPoint (class in ksconf.setup_entrypoints)

 	location (ksconf.conf.delta.DiffOp attribute)

M

 	
 	match_bwlist() (in module ksconf.util.file)

 	maturity (ksconf.commands.KsconfCmd attribute)

 	
 	merge_conf_dicts() (in module ksconf.conf.merge)

 	merge_conf_files() (in module ksconf.conf.merge)

 	module_name (ksconf.setup_entrypoints.Ep attribute)

N

 	
 	name (ksconf.setup_entrypoints.Ep attribute)

O

 	
 	object_name (ksconf.setup_entrypoints.Ep attribute)

P

 	
 	parse_conf() (in module ksconf.conf.parser)

 	(ksconf.commands.KsconfCmd method)

 	
 	parse_conf_stream() (in module ksconf.conf.parser)

 	post_run() (ksconf.commands.KsconfCmd method)

 	pre_run() (ksconf.commands.KsconfCmd method)

R

 	
 	readable() (ksconf.commands.ConfFileProxy method)

 	reduce_stanza() (in module ksconf.conf.delta)

 	register_args() (ksconf.commands.KsconfCmd method)

 	ReluctantWriter (class in ksconf.util.file)

 	
 	relwalk() (in module ksconf.util.file)

 	reset() (ksconf.commands.ConfFileProxy method)

 	(ksconf.util.terminal.TermColor method)

 	returncode (ksconf.vc.git.GitCmdOutput attribute)

 	run() (ksconf.commands.KsconfCmd method)

S

 	
 	sanity_checker() (in module ksconf.archive)

 	section_reader() (in module ksconf.conf.parser)

 	set_parser_option() (ksconf.commands.ConfFileProxy method)

 	show_diff() (in module ksconf.conf.delta)

 	show_text_diff() (in module ksconf.conf.delta)

 	smart_copy() (in module ksconf.util.file)

 	smart_write_conf() (in module ksconf.conf.parser)

 	
 	splitup_kvpairs() (in module ksconf.conf.parser)

 	stanza (ksconf.conf.delta.DiffStanza attribute)

 	(ksconf.conf.delta.DiffStzKey attribute)

 	stderr (ksconf.vc.git.GitCmdOutput attribute)

 	stdout (ksconf.vc.git.GitCmdOutput attribute)

 	stream (ksconf.commands.ConfFileProxy attribute)

 	summarize_cfg_diffs() (in module ksconf.conf.delta)

T

 	
 	tag (ksconf.conf.delta.DiffOp attribute)

 	TermColor (class in ksconf.util.terminal)

 	Token (class in ksconf.conf.parser)

 	
 	tty_color() (in module ksconf.util.terminal)

 	type (ksconf.conf.delta.DiffGlobal attribute)

 	(ksconf.conf.delta.DiffStanza attribute)

 	(ksconf.conf.delta.DiffStzKey attribute)

U

 	
 	unlink() (ksconf.commands.ConfFileProxy method)

V

 	
 	version_extra (ksconf.commands.KsconfCmd attribute)

W

 	
 	writable() (ksconf.commands.ConfFileProxy method)

 	write() (ksconf.util.terminal.TermColor method)

 	
 	write_conf() (in module ksconf.conf.parser)

 	write_conf_stream() (in module ksconf.conf.parser)

 _static/up.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Kintyre’s Splunk CONFiguration tool

 		
 Introduction

 		
 Design principles

 		
 Common uses for ksconf

 		
 Getting started

 		
 Concepts

 		
 Configuration layers

 		
 What’s the problem?

 		
 Minimizing files

 		
 Installation Guide

 		
 Overview

 		
 Requirements

 		
 Install Splunk App

 		
 Install Python package

 		
 Quick install

 		
 Enable Bash completion

 		
 Ran into issues?

 		
 Install from GIT

 		
 Validate the install

 		
 Missing 3rd party libraries

 		
 Other issues

 		
 Command line completion

 		
 Commands

 		
 Cheat Sheet

 		
 General purpose

 		
 Comparing files

 		
 Sorting content

 		
 Extract specific stanza

 		
 Remove unwanted settings

 		
 Cleaning up

 		
 Reduce cruft in local

 		
 Pushing local changes to default

 		
 Advanced usage

 		
 Migrating content between apps

 		
 Migrating the ‘users’ folder

 		
 Maintaining apps stored in a local git repository

 		
 Putting it all together

 		
 Pulling out a stanza defined in both default and local

 		
 Building an all-in one TA for your indexing tier

 		
 Contributing

 		
 Pre-commit hook

 		
 Installing the pre-commit hook

 		
 Install gitlint

 		
 Refresh module listing

 		
 Create a new subcommand

 		
 Developer setup

 		
 Tools

 		
 Install ksconf

 		
 Building the docs

 		
 Git tips & tricks

 		
 Pre-commit hooks

 		
 Hooks provided by ksconf

 		
 Configuring pre-commit hooks in you repo

 		
 Should my version of ksconf and pre-commit plugins be the same?

 		
 Git configuration tweaks

 		
 Ksconf as external difftool

 		
 Stanza aware textual diffs

 		
 Random

 		
 Typographic and Convention

 		
 How Splunk writes to conf files

 		
 Grandfather Paradox

 		
 Contact

 		
 Command line reference

 		
 ksconf

 		
 ksconf check

 		
 ksconf combine

 		
 ksconf diff

 		
 ksconf filter

 		
 ksconf promote

 		
 ksconf merge

 		
 ksconf minimize

 		
 ksconf snapshot

 		
 ksconf sort

 		
 ksconf rest-export

 		
 ksconf rest-publish

 		
 ksconf unarchive

 		
 ksconf xml-format

 		
 Changelog

 		
 Ksconf 0.7.x

 		
 Release v0.7.4 (2019-06-07)

 		
 Release v0.7.3 (2019-06-05)

 		
 Release v0.7.2 (2019-03-22)

 		
 Release v0.7.1 (2019-03-13)

 		
 Release v0.7.0 (2019-02-27)

 		
 Ksconf 0.6.x

 		
 Release v0.6.2 (2019-02-09)

 		
 Release v0.6.1 (2019-02-07)

 		
 Release v0.6.0 (2019-02-06)

 		
 Ksconf 0.5.x

 		
 Release v0.5.6 (2019-02-04)

 		
 Release v0.5.5 (2019-01-28)

 		
 Release v0.5.4 (2019-01-04)

 		
 Release v0.5.3 (2018-11-02)

 		
 Release v0.5.2 (2018-08-13)

 		
 Release v0.5.1 (2018-06-28)

 		
 Release v0.5.0 (2018-06-26)

 		
 Ksconf 0.4.x

 		
 Release v0.4.10 (2018-06-26)

 		
 Release v0.4.9 (2018-06-05)

 		
 Release v0.4.8 (2018-06-05)

 		
 Release v0.4.4-v0.4.1 (2018-06-04)

 		
 Release v0.4.3 (2018-06-04)

 		
 Release v0.4.2 (2018-06-04)

 		
 Release v0.4.1 (2018-06-04)

 		
 Release v0.4.0 (2018-05-19)

 		
 Ksconf 0.3.x

 		
 Release v0.3.2 (2018-04-24)

 		
 Release v0.3.1 (2018-04-21)

 		
 Release v0.3.0 (2018-04-21)

 		
 Ksconf legacy releases

 		
 Release legacy-v1.0.1 (2018-04-20)

 		
 Release legacy-v1.0.0 (2018-04-16)

 		
 Known issues

 		
 General

 		
 Splunk app

 		
 Advanced Installation Guide

 		
 Flowchart

 		
 Installation

 		
 Install from PyPI with PIP

 		
 CentOS (RedHat derived) distros

 		
 Use the standalone executable

 		
 Install the Wheel manually (offline mode)

 		
 Install with Splunk’s Python

 		
 Offline installation

 		
 Offline installation steps

 		
 Offline installation of pip

 		
 Frequent gotchas

 		
 PIP Install TLS Error

 		
 No module named ‘command.install’

 		
 Troubleshooting

 		
 Check Python version

 		
 Check PIP Version

 		
 Validate the install

 		
 Resources

 		
 License

 		
 API Reference

 		
 ksconf

 		
 Subpackages

 		
 Submodules

 		
 ksconf.archive module

 		
 ksconf.consts module

 		
 ksconf.setup_entrypoints module

 		
 Module contents

_static/ajax-loader.gif

_images/logo.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

