

Ksconf Splunk CONFiguration tool

[image: Ksconf logo]

	Author:

	Lowell Alleman (Kintyre)

	Version:

	0.13

Welcome to KSCONF!

KSCONF is a modular command line tool for Splunk admins and app developers.
It’s quick and easy to get started with basic commands and grow into the more advanced commands as needed.
Thank you for reviewing our expanding body of documentation to help smooth your transition to a more well-managed Splunk
environment and explore ways to integrate Ksconf capabilities into your existing workflow.

We are glad you are here! No matter where you’re starting from, Ksconf can help. Let us
know if there is anything we can do to help along your journey.

– Kintyre, a CDI Company

Install

Ksconf can be directly installed as a Python (via pip) or as a Splunk app. The Splunk app option is often easier.

To install as a python package, run the following:

pip install ksconf

To install the Splunk app, download the latest KSCONF App for Splunk [https://splunkbase.splunk.com/app/4383/] release. Note that a
one-time registration command is needed to make ksconf executable:

splunk cmd python3 $SPLUNK_HOME/etc/apps/ksconf/bin/install.py

User Guide

Contents

	Introduction
	Design principles

	Common uses for Ksconf

	Getting started

	Concepts
	Configuration layers

	Minimizing files

	Installation Guide
	Overview

	Requirements

	Install Splunk App

	Install Python package

	Install from GIT

	Validate the install

	Command line completion

	Commands

	Cheat Sheet
	General purpose

	Cleaning up

	Packaging and building apps

	Advanced usage

	Putting it all together

	Plugins
	Using plugins

	Troubleshooting

	List of plugins

	Plugin examples

	Packaging a Plugin

	Contributing
	Pre-commit hook

	Refresh module listing

	Create a new subcommand

	Cookiecutter options

	Developer setup
	Tools

	Install ksconf

	Building the docs

	Running TOX

	Git tips & tricks
	Pre-commit hooks

	Git configuration tweaks

	Git tricks

	Random
	Typographic and Convention

	How Splunk writes to conf files

	Grandfather Paradox

	Contact

Reference

	Command line reference

	Changelog

	Known issues

	Advanced Installation Guide

	License

	API Reference

Indices and tables

	Index

	Module Index

	Search Page

Introduction

ksconf
is a command-line tool that helps administrators and developers manage their Splunk environments by
enhancing their ability to control configuration files. By design, the interface is modular so that
each function (aka subcommand) can be learned quickly and used independently. Most Ksconf commands
are simple enough for a quick one-off job, yet reliable enough to integrate into complex app build
and deployment workflow.

Ksconf helps manage the nuances of storing Splunk apps in a version control system, such as git. It
also supports pointing live Splunk apps to a working tree, merging changes from the live system’s
(local) folder to the version controlled folder (often ‘default’), and in more complex cases, it
deals with more than one layer of “default”, which Splunk can’t handle
natively.

Note

What KSCONF is not

Ksconf does not replace your existing Splunk deployment mechanisms or version control tools.
The goal is to complement and extend, not replace, the workflow that works for you.

Design principles

	Ksconf is a toolbox.
	Each tool has a specific purpose and function that works independently.
Borrowing from the Unix philosophy, each command should do one thing well and be easily combined
to handle higher-order tasks.

	When possible, be familiar.
	Various commands borrow from popular UNIX command line tools such as grep and
diff. The modular nature of the command and other design features were borrowed from
git and splunk as well.

	Don’t impose workflow.
	Ksconf works with or without version control and independently of your deployment mechanisms.
If you are looking to implement these things, Ksconf is a great building block.

	Embrace automated testing.
	It’s impractical to check every scenario between each release, but significant work has gone
into unit testing the CLI to avoid breakage.

Common uses for Ksconf

	Build and package Splunk apps

	Promote changes from local to default

	Maintain multiple independent layers of configurations

	Reduce duplicate settings in a local file

	Upgrade apps stored in version control

	Merge or separate configuration files

	Git pre-commit hook for validation

	Git post-checkout hook for workflow automation

	Send .conf stanzas to a REST endpoint (Splunk Cloud or no file system access)

Getting started

You’re in the right place. If you are a beginner, try checking these out first:

	Cheat Sheet - Like jumping in the deep end, or prefer examples of descriptions? Start here.

	Concepts - To get a more theoretical background on why these things matter.

	Commands - Start here if you’d like a more thorough introduction.

Concepts

Configuration layers

The idea of configuration layers is shared across multiple actions in Ksconf.
Specifically, combine is used to merge multiple layers, and the
unarchive command can be used to install or upgrade an app in a
layer-aware way.

What’s the problem?

In a typical enterprise deployment of Splunk, a single app can easily have multiple logical sources
of configuration:

	Upstream app releases, often from Splunkbase

	Organization-specific customizations or fixes added by a local developer

	Fixes to buggy upstream settings, like indexes.conf, requested by your Splunk admin

	Custom knowledge objects created by subject matter experts

Ideally we would like to version control these, but doing so is complicated because normally you have to
manage all four of these logical layers in one ‘default’ folder.

Note

Isn’t that what the local folder is for?

Splunk requires that app settings be located either in default or local;
and managing local files with version control leads to merge conflicts.
So effectively, all version controlled settings need to be in default,
or risk merge conflicts. However, making changes to the default folder causes
issues when you attempt to upgrade an app upstream. See how this is a dilemma?

Let’s suppose a new upstream version is released.
If you aren’t managing layers independently, then you have to manually upgrade the app, being careful to preserve all custom configurations.
Compare this to the solution provided by the combine functionality.
The layered approach provides an advantage because logical sources can be stored separately in their own directories, thus allowing them to be modified independently.
Using this approach, changes in the “upstream” layer will only come from an official release, and the organizational layer will contain customizations made solely by your organization.
Practically, this means it’s no longer necessary to comb through commit logs identifying which custom changes need to be preserved and reapplied.

While this doesn’t completely remove the need for a person to review app upgrades, it does lower the
overhead enough that updates can be pulled in more frequently, thus minimizing divergence.

Minimizing files

A typical scenario:

To customize a Splunk app or add-on, many admins simply copy the conf file from default to local and then apply changes to the local copy.
That’s a common practice, but stopping there complicates future upgrades.
The next step should be to clean up the local file, deleting all the unmodified entries that were copied from default.

Why does this matter?

If you’ve copied a default file into the local folder, this means that local file doesn’t contain only your settings, it contains a copy of all of the default settings too.
So in the future, fixes published by the app creator are likely to be masked by your local settings.
A better approach is to reduce the local conf file leaving only the stanzas and settings that you intended to change.
While this is a monotonous to do by hand, it is easily accomplished by ksconf minimize.
This makes your conf files easier to read and simplifies upgrades.

What does Splunk have to say about this? (From the docs)

“When you first create this new version of the file, start with an empty file and add only
the attributes that you need to change. Do not start from a copy of the default directory. If you
copy the entire default file to a location with higher precedence, any changes to the default
values that occur through future Splunk Enterprise upgrades cannot take effect, because the
values in the copied file will override the updated values in the default file.” – [SPLKDOC1]

Tip

It’s a good practice to minimize your files right away.
If you wait, it may not be obvious what specific version of default that local was copied from.
In other words, if you run the minimize command after you’ve upgraded the default folder, you may need to do extra work to manually reconcile upgrade differences,
because any changes made between the initial version of the default file and the most recent release of the conf file cannot, be automatically addressed in this fashion.
If your files are all in git, and you know a REF of the previous version of your default file, you can use some commands like this:

Review the output of the log, and find the revision of the last change
git log --oneline -- default/inputs.conf

Assuming "e633e6" was identified as the desired baseline ref, based on the 'log' output

Compare what's changed in the 'inputs.conf' file between releases (FYI only)
ksconf diff <(git show e633e6:./default/inputs.conf) default/inputs.conf

Now apply the 'minimization' based on the original version of inputs.conf
ksconf minimize --target=local/inputs.conf <(git show e633e6:./default/inputs.conf)

As always, be sure to double check the results.

[SPLKDOC1]
https://docs.splunk.com/Documentation/Splunk/7.2.3/Admin/Configurationfiledirectories

Installation Guide

KSCONF can be installed either as a Splunk app or a Python package. Picking the option that’s right
for you is fairly easy.

Unless you have experience with Python packaging or are planning on customizing or extending Ksconf, then the Splunk app is likely the best place for you to start.
The native Python package works well for many developer-centric scenarios, but installation ends up being complicated for the more typical admin-centric use-case.
Therefore, most users will find it easier to start with the Splunk app.

Note

The introduction of a Splunk app is a fairly new occurrence (as of the 0.6.x release).
Originally we resisted this idea, since ksconf was designed to manage other apps, not live within one.
Ultimately however, the packaging decision was made to ensure users of all levels can utilize the program,
as Python packaging is a mess and can be daunting for the uninitiated.

Overview

	Install

	Advantages

	Potential pitfalls

	Python
package

	
	Most ‘pure’ and flexible install

	One command install. (ideal)

	Easy upgrades

	More extendable (plugins)

	Install Python package

	
	Lots of potential variations and pitfalls

	Many Linux distros don’t ship with pip

	Must consider/coordinate installation user.

	Often requires some admin access.

	Too many install options (complexity)

	Splunk
app

	
	Quick installation (single download)

	Requires one time bootstrap command

	Self contained; no admin access require

	Fast demo; fight with pip later

	Install Splunk App

	
	Crippled Python install (no pip)

	Can’t add custom extensions or plugins

	No CLI completion (yet)

	Grandfather Paradox

	Offline
package

	
	Security: strict review and change control

	Advanced Installation Guide.

	
	Requires many steps.

	Inherits ‘Python package’ pitfalls.

Requirements

Python package install:

	Python [https://www.python.org/downloads/] Supports Python 3.7+

	PIP [https://pip.pypa.io/en/stable/installing/]

	Tested on Mac, Linux, and Windows

Splunk app install:

	Splunk 8.0 or greater is installed

Install Splunk App

Download and install the KSCONF App for Splunk [https://splunkbase.splunk.com/app/4383/]. Then open a shell, switch to the Splunk user
account and run this one-time bootstrap command.

splunk cmd python3 $SPLUNK_HOME/etc/apps/ksconf/bin/install.py

On Windows, open a terminal as Administrator and type:

cd "C:\Program Files\Splunk"
bin\splunk.exe cmd python3 etc\apps\ksconf\bin\install.py

This will add ksconf to Splunk’s bin folder, thus making it executable either as ksconf
or, less optimally, splunk cmd ksconf. (If you can run splunk without giving it a path, then
ksconf should work too.)

At some point we may add an option for you to do this setup step from the UI.

Note

Alternate download

You can also download the latest (and pre-release) SPL from the GitHub Releases [https://github.com/Kintyre/ksconf/releases] page.
Download the file named like ksconf-app_for_splunk-ver.tgz

Install Python package

Quick Install

Using pip:

pip install ksconf

System-level install: (For Mac/Linux)

curl https://bootstrap.pypa.io/get-pip.py | sudo python - ksconf

Enable Bash Completion

Context-aware autocomplete can be a great time saver.
If you’re on a Mac or Linux, and would like to enable bash completion, run these commands:

pip install argcomplete
echo 'eval "$(register-python-argcomplete ksconf)"' >> ~/.bashrc

(This option is not currently available for Splunk App installs due to a lack of documentation and testing available presently.
It should be possible. Pull requests are welcome.)

Ran into issues?

If you encounter any issues, please refer to the Advanced Installation Guide.
Substantial time and effort was placed into the assembly of the information based on various scenarios we encountered.
A good place to begin would be in the Troubleshooting section.

Install from GIT

If you’d like to contribute to ksconf, or just build the latest and greatest, then installing from the
git repository is a good choice. (Technically this is still installing with pip, so it’s easy
to switch between a PyPI install, and a local install.)

git clone https://github.com/Kintyre/ksconf.git
cd ksconf
pip install .

See Developer setup for additional details about contributing to ksconf.

Validate the install

No matter how you install ksconf, you can confirm that it’s working with the following command:

ksconf --version

The output should look something like this:

 #
 ##
 ### ## #### ###### ####### ### ## #######
 ### ## ### ### ## #### ##
 ##### ### ### ## ## ####### #######
 ### ## ### ### ## ## ### ### ##
 ### ## ##### ###### ##### ### ## ##
 #

ksconf 0.7.3 (Build 376)
Python: 2.7.15 (/Applications/splunk/bin/python)
Git SHA1 dc94f811 committed on 2019-06-05
Installed at: /Applications/splunk/etc/apps/ksconf/bin/lib/ksconf
Written by Lowell Alleman <lowell@kintyre.co>.
Copyright (c) 2019 Kintyre Solutions, Inc, all rights reserved.
Licensed under Apache Public License v2

 kintyre_splunk_conf (0.7.3)

 Commands:
 check (stable) OK
 combine (beta) OK
 diff (stable) OK
 filter (alpha) OK
 merge (stable) OK
 minimize (beta) OK
 promote (beta) OK
 rest-export (beta) OK
 rest-publish (alpha) OK (splunk-sdk 1.6.6)
 snapshot (alpha) OK
 sort (stable) OK
 unarchive (beta) OK
 xml-format (alpha) OK (lxml 4.2.5)

Missing 3rd party libraries

Note

Splunk app for KSCONF users don’t need to worry about this.

As of version 0.7.0, ksconf now includes commands that require external libraries.
But to keep the main package slim, these libraries aren’t strictly required unless you want the specific commands.
As part of this change, ksconf --version now reports any issues with individual commands in the 3rd column.
Any value other than ‘OK’ indicates a problem.
Here’s an example of the output if you’re missing the splunk-sdk package.

...
promote (beta) OK
rest-export (beta) OK
rest-publish (alpha) Missing 3rd party module: No module named splunklib.client
snapshot (alpha) OK
...

Note that while the rest-publish command will not work in the example above, all of the other commands will continue to work fine.
If you don’t need rest-publish then there’s no need to do anything about it.
If you want the packages, install the “thirdparty” extras using the following command:

pip install ksconf[thirdparty]

If you want all the goodies:

pip install ksconf[fully-loaded]

Other issues

If you run into any issues, check out the Validate the install section.

Command line completion

Bash completion allows for a more intuitive and interactive workflow by providing quick access to
command line options and file completions. Often this saves time since the user can avoid mistyping
file names or be reminded of which command line actions and arguments are available without
switching contexts. For example, if the user types ksconf d and hits Tab, then the
ksconf diff is completed. Or if the user types ksconf, and hits Tab twice, the full
list of command actions are listed.

This feature uses the argcomplete [https://argcomplete.readthedocs.io/en/latest/] Python package and supports Bash, zsh, tcsh.

Install via pip:

pip install argcomplete

Enabling command line completion for ksconf can be done in two ways. The easiest option is to enable
it for ksconf only. (However, it only works for the current user; it can break if the ksconf
command is referenced in a non-standard way.) The alternate option is to enable global command line
completion for all python scripts at once, which is preferable if you use argparse for many python tools.

Enable argcomplete for ksconf only:

Edit your bashrc script
vim ~.bashrc

Add the following line
eval "$(register-python-argcomplete ksconf)"

Restart you shell, or just reload by running
source ~/.bashrc

To enable argcomplete globally, run the command:

activate-global-python-argcomplete

This adds a new script to your the bash_completion.d folder, which can be used for all scripts and
all users, but it does add some minor overhead to each completion command request.

OS-specific notes:

	Mac OS X: The global registration option may not work as the old version of Bash was shipped by
default. So either use the one-shot registration, or install a later version of bash with
homebrew: brew install bash then. Switch to the newer bash by default with
chsh /usr/local/bin/bash.

	Windows: Argcomplete doesn’t work on windows Bash for GIT. See argcomplete issue 142 [https://github.com/kislyuk/argcomplete/issues/142] for more info. If you really want this,
use Linux subsystem for Windows instead.

Commands

The ksconf command documentation is provided in the following ways:

	A detailed listing of each sub-command is provided in this section.
This includes relevant background descriptions, typical use cases, examples, and discussion of
relevant topics. An expanded descriptions of CLI arguments and their usage is provided here.
If you have not used a particular command before, start here.

	The Command line reference provides a quick and convenient reference when
the command line is unavailable. The same information is available by typing ksconf <CMD> --help.
This is most helpful if you’re already familiar with a command, but need a quick refresher.

Warning

Apologies for the dust

The command docs are currently undergoing reorganization. We’re considering a topical layout
rather than a per-command layout. Feedback and technical writing / organization contributions
are highly welcomed.

Command Listing

	Command

	Maturity

	Description

	ksconf attr-get

	beta

	Get the value from a specific stanzas and attribute

	ksconf attr-set

	beta

	Set the value of a specific stanzas and attribute

	ksconf check

	stable

	Perform basic syntax and sanity checks on .conf files

	ksconf combine

	beta

	Combine configuration files across multiple source directories into a single destination directory. This allows for an arbitrary number of Splunk configuration layers to coexist within a single app. Useful in both ongoing merge and one-time ad-hoc use.

	ksconf diff

	stable

	Compare settings differences between two .conf files ignoring spacing and sort order

	ksconf filter

	alpha

	A stanza-aware GREP tool for conf files

	ksconf merge

	stable

	Merge two or more .conf files

	ksconf minimize

	beta

	Minimize the target file by removing entries duplicated in the default conf(s)

	ksconf package

	beta

	Create a Splunk app .spl file from a source directory

	ksconf promote

	beta

	Promote .conf settings between layers using either batch or interactive mode. Frequently this is used to promote conf changes made via the UI (stored in the local folder) to a version-controlled directory, such as default.

	ksconf rest-export

	deprecated

	Export .conf settings as a curl script to apply to a Splunk instance later (via REST)

	ksconf rest-publish

	alpha

	Publish .conf settings to a live Splunk instance via REST

	ksconf snapshot

	alpha

	Snapshot .conf file directories into a JSON dump format

	ksconf sort

	stable

	Sort a Splunk .conf file creating a normalized format appropriate for version control

	ksconf unarchive

	beta

	Install or upgrade an existing app in a git-friendly and safe way

	ksconf xml-format

	alpha

	Normalize XML view and nav files

ksconf

KSCONF: Ksconf Splunk CONFig tool

This utility handles a number of common Splunk app maintenance tasks in a small
and easy to deploy package. Specifically, this tool deals with many of the
nuances with storing Splunk apps in git and pointing live Splunk apps to a git
repository. Merging changes from the live system’s (local) folder to the
version controlled (default) folder and dealing with more than one layer of
“default” are all supported tasks which are not native to Splunk.

usage: ksconf [-h] [--version] [--force-color] [--disable-color]
 {attr-get,attr-set,check,combine,diff,filter,merge,minimize,package,promote,rest-export,rest-publish,snapshot,sort,unarchive,xml-format}
 ...

Named Arguments

	--version

	show program’s version number and exit

	--force-color

	Force TTY color mode on. Useful if piping the output a color-aware pager, like ‘less -R’

	--disable-color

	Disable TTY color mode. This can also be setup as environmental variable: export KSCONF_TTY_COLOR=off

ksconf attr-get

Get a specific stanza and attribute value from a Splunk .conf file.

usage: ksconf attr-get [-h] --stanza STANZA --attribute ATTR [--missing-okay]
 [-o OUTPUT]
 conf [conf ...]

Positional Arguments

	conf

	Input file or standard input.

Named Arguments

	--stanza, -s

	Name of the stanza within CONF to retrieve.

	--attribute, --attr, -a

	Name of attribute within STANZA to retrieve.

	--missing-okay

	Ignore missing stanzas and attributes.

	-o, --output

	File where the filtered results are written. Defaults to standard out.

Example

Show the version of the Splunk AWS technology addon:

ksconf attr-get etc/apps/Splunk_TA_AWS/default/app.conf --stanza launcher --attribute version

Fetch the search string for the “Internal Server Errors” search in the from my_app.
The search is saved to a text file without any metadata or line continuation markers (trailing \ characters.)
Note that kconf merge is used here to ensure that the “live” version of the search is shown, so local will be used if present, otherwise default will be shown.

ksconf merge $SPLUNK_HOME/etc/apps/my_app/{default,local}/savedsearches.conf \
| ksconf attr-get - -s "Internal System Errors" -a search -o errors_search.txt

ksconf attr-set

Set a specific stanza and attribute value of a Splunk .conf file.
The value can be provided as a command line argument, file, or
environment variable

This command does not support preserving leading or trailing whitespace.
Normally this is desireable.

usage: ksconf attr-set [-h] --stanza STANZA --attribute ATTR
 [--value-type TYPE] [--create-missing] [--no-overwrite]
 conf value

Positional Arguments

	conf

	Configuration file to update.

	value

	Value to apply to the conf file. Note that this can be a raw text string, or the name of the file, or an environment variable

Named Arguments

	--stanza, -s

	Name of the stanza within CONF to set.

	--attribute, --attr, -a

	Name of the attribute within STANZA to set.

	--value-type, -t

	Possible choices: string, file, env

Select the type of VALUE. The default is a string. Alternatively, the real value can be provided within a file, or an environment variable.

	--create-missing

	Create a new conf file if it doesn’t currently exist.

	--no-overwrite

	Only set VALUE if none currently exists. This can be used to safely set a one-time default, but don’t update overwrite an existing value.

Example

Update build during CI/CD

ksconf attr-set build/default.app -s launcher -a version 1.1.2
ksconf attr-set build/default.app -s launcher -a build --value-type env GITHUB_RUN_NUMBER

Rewrite a saved search to match the new cooperate initiative to relabel all “CRITICAL” messages as “WHOOPSIES”.

ksconf attr-get savedsearches.conf -s "Internal System Errors" -a search \
 | sed -re 's/CRITICAL/WHOOPSIES/g' \
 | ksconf attr-set savedsearches.conf -s "Internal System Errors" -a search --value-type file -

Note

What if you want to write multiple stanza/attributes at once?

Of course it’s possible to call ksconf attr-set multiple times, but that may be awkward or inefficient if many updates are needed.
In the realm of shell scripting, another option is to use ksconf merge which is designed to merge multiple stanzas, or even multiple files, at once.
With a little bit of creatively, it’s possible to add (or update) and entire new stanza in-line using a single command like so:

printf '[drop_field(1)]\ndefinition=| fields - $field$\nargs=field\niseval=0\n' \
 | ksconf merge --in-place --target macros.conf -

which is identical to:
ksconf merge --in-place --target macros.conf \
 <(printf '[drop_field(1)]\ndefinition=| fields - $field$\nargs=field\niseval=0\n')

Of course, neither of these are super easy to read. If your content is static, then an easy answer it to use a static conf file.
However, at some point it may be easier to just edit these using Python where any arbitrary level of complexity is possible.

Ksconf has some built in utility functions to make this kind of simple update-in-place workflow super simple.
For example, the update_conf context manager allows access to existing conf values and quick modification.
If no modification is necessary, then the file is left untouched.

from ksconf.conf.parser import update_conf, conf_attr_boolean

Update app.conf for a build release
with update_conf("app.conf") as conf:
 conf["launcher"]["version"] = "1.0.2"
 conf["install"]["build"] = "33"

Update sourcetype references in all saved searches; place marker in description
with update_conf("savedsearches.conf") as conf:
 for report in conf:
 if not conf_attr_boolean(conf[report].get("disabled", "0")):
 # Update enabled search
 search = conf[report].get("search", "")
 conf[report]["search"] = search.replace("cisco:old-understood-tech",
 "cisco:new-fangled-tech")
 conf[report]["description"] = f"We did an update.\n Old description: {conf[report].get('description', '')}"

ksconf check

Provides basic syntax and sanity checking for Splunk’s .conf
files. Use Splunk’s built-in btool check for a more robust
validation of attributes and values.

Consider using this utility as part of a pre-commit hook.

usage: ksconf check [-h] [--quiet] FILE [FILE ...]

Positional Arguments

	FILE

	One or more configuration files to check.
If ‘-’ is given, then read a list of files to validate from standard input

Named Arguments

	--quiet, -q

	Reduce the volume of output.

See also

Pre-commit hooks

See Pre-commit hooks for more information about how the check command can be easily
integrated in your git workflow.

How ‘check’ differs from btool’s validation

Keep in mind that idea of valid in ksconf is different than within Splunk. Specifically,

	Ksconf is more picky syntactically. Dangling stanzas and junk lines are picked up by
ksconf in general (the ‘check’ command or others), but silently by ignored Splunk.

	Btool handles content validation. The btool check mode does a great job of checking
stanza names, attribute names, and values. Btool does this well and ksconf tries to not repeat
things that Splunk already does well.

Why is this important?

Can you spot the error in this props.conf?

1[myapp:web:access]
2TIME_PREFIX = \[
3SHOULD_LINEMERGE = false
4category = Web
5REPORT-access = access-extractions
6
7[myapp:total:junk
8TRANSFORMS-drop = drop-all

That’s right, line 7 contains the stanza myapp:total:junk that doesn’t have a closing].
How does Splunk handle this? It ignores the broken stanza header completely and therefore TRANSFORMS-drop gets added
to the myapp:web:access sourcetype, which will likely result in the loss of data.

Splunk also ignores entries like this:

EVAL-bytes-(coalesce(bytes_in,0)+coalesce(bytes_out,0))

Of course here there’s no = anywhere on the line, so Splunk just assumes it’s junk and silently
ignores it.

Tip

If you want to see how different this is, run ksconf check against the system default files:

ksconf check --quiet $SPLUNK_HOME/etc/system/default/*.conf

There’s several files that ship with the core product that don’t pass this level of validation.

Note

Key concepts

Before diving into the combine command, it may be helpful to brush up on the concept of
configuration layers.

ksconf combine

Merge .conf settings from multiple source directories into a combined target
directory. Configuration files can be stored in a /etc/*.d like directory
structure and consolidated back into a single ‘default’ directory.

This command supports both one-time operations and recurring merge jobs. For
example, this command can be used to combine all users’ knowledge objects (stored
in ‘etc/users’) after a server migration, or to merge a single user’s settings
after their account has been renamed. Recurring operations assume some type
of external scheduler is being used. A best-effort is made to only write to
target files as needed.

The ‘combine’ command takes your logical layers of configs (upstream, corporate,
Splunk admin fixes, and power user knowledge objects, …) expressed as
individual folders and merges them all back into the single default folder
that Splunk reads from. One way to keep the ‘default’ folder up-to-date is
using client-side git hooks.

No directory layout is mandatory, but taking advantages of the native-support
for ‘dir.d’ layout works well for many uses cases. This idea is borrowed from
the Unix System V concept where many services natively read their config files
from /etc/*.d directories.

Version notes: dir.d was added in ksconf 0.8. Starting in 1.0 the default will
switch to ‘dir.d’, so if you need the old behavior be sure to update your scripts.

usage: ksconf combine [-h] --target TARGET [-m {auto,dir.d,disable}] [-q]
 [-I PATTERN] [-E PATTERN] [--enable-handler {jinja}]
 [--template-vars TEMPLATE_VARS] [--dry-run]
 [--follow-symlink] [--banner BANNER] [-K KEEP_EXISTING]
 [--disable-marker] [--disable-cleanup]
 source [source ...]

Positional Arguments

	source

	The source directory where configuration files will be merged from.
When multiple source directories are provided, start with the most general and end
with the specific; later sources will override values from the earlier ones.
Supports wildcards so a typical Unix conf.d/##-NAME directory structure works well.

Named Arguments

	--target, -t

	Directory where the merged files will be stored.
Typically either ‘default’ or ‘local’

	-m, --layer-method

	Possible choices: auto, dir.d, disable

Set the layer type used by SOURCE.

Use dir.d if you have directories like MyApp/default.d/##-layer-name, or use
disable to manage layers explicitly and avoid any accidental layer detection.
By default, auto mode will enable transparent switching between ‘dir.d’ and ‘disable’
(legacy) behavior, however this option will be removed in a future release.

	-q, --quiet

	Make output a bit less noisy. This may change in the future…

	-I, --include

	Name or pattern of layers to include.

	-E, --exclude

	Name or pattern of layers to exclude from the target.

	--enable-handler

	Possible choices: jinja

Enable optional file handling support

	--template-vars

	Set template variables as key=value or YAML/JSON, if filename prepend with @

	--dry-run, -D

	Enable dry-run mode.
Instead of writing to TARGET, preview changes as a ‘diff’.
If TARGET doesn’t exist, then show the merged file.

	--follow-symlink, -l

	Follow symbolic links pointing to directories. Symlinks to files are always followed.

	--banner, -b

	A banner or warning comment added to the top of the TARGET file. Used to discourage Splunk admins from editing an auto-generated file.

For other on-going combine operations, it’s helpful to inform any .conf file readers or potential editors that the file is automatically generated and therefore could be overwritten again.
For one-time combine operations, the default banner can be suppressed by passing in an empty string ('' or "" on Windows)

	-K, --keep-existing

	Existing file(s) to preserve in the TARGET folder. This argument may be used multiple times.

	--disable-marker

	Prevents the creation of or checking for the .ksconf_controlled marker file safety check.
This file is typically used indicate that the destination folder is managed by ksconf.
This option should be reserved for well-controlled batch processing scenarios.

	--disable-cleanup

	Disable all file removal operations. Skip the cleanup phase that typically removes files in TARGET that no longer exist in SOURCE

You may have noticed similarities between the combine and merge
subcommands. That’s because under the covers they are using much of the same code. The combine
operation essentially does a recursive merge between a set of directories. One big difference is
that combine command will handle non-conf files intelligently, not just conf files.
Additionally, combined can automatically detect layers for you, depending on the layering scheme in use.

Mixing layers

Just like all layers can be managed independently, they can also be combined in any way you would like.
This also allows for different layers to be mixed-and-matched by selectively including layers to combine.
This feature is now available in ksconf 0.8.0 and later using the --include and --exclude CLI options,
which should behave as just as you’d expected.

Note

A more detailed explanation

The --include and --exclude arguments are processed in the order given.
These filters are applied to all layer names.
The last match wins.

If --include is first, then by default all layers, except for the ones explicitly included, will be excluded.
Conversely, if --exclude is first, then all layers will be included except for the ones explicitly included.
If no filters are given then all layers will be processed.

Here’s an example, truncated for brevity, to further demonstrate how this can be used practically:

Splunk_TA_nix/
├── README.txt
├── bin
│ ├── bandwidth.sh
│ ├── common.sh
├── default.d
│ ├── 10-upstream
│ │ ├── app.conf
│ │ ├── data
│ │ │ └── ui
│ │ │ ├── nav
│ │ │ │ └── default.xml
│ │ │ └── views
│ │ │ └── setup.xml
│ │ ├── eventtypes.conf
│ │ ├── inputs.conf
│ │ ├── props.conf
│ │ ├── tags.conf
│ │ ├── transforms.conf
│ │ └── web.conf
│ ├── 20-common
│ │ ├── inputs.conf
│ │ ├── props.conf
│ │ └── transforms.conf
│ ├── 30-master-apps
│ │ └── inputs.conf
│ └── 30-shcluster-apps
│ ├── inputs.conf
│ └── web.conf
├── lookups
│ ├── nix_da_update_status.csv
│ ├── nix_da_version_ranges.csv
└── metadata
 └── default.meta

Here we have several named layers in play:

	10-upstream - the layer used to contain the default app content that ships from the Splunk TA, or whatever is “upstream” source is.

	20-common - organizational level change to deployed everywhere.

	30-master-apps - The bits that should just go to the indexers.

	30-shcluster-apps - Content that should go to just the search heads.

In this case, we always want to combine the 10-* and 20-* layers, but only want to include either the master or searchhead cluster layer depending on server role.

ksconf combine src/Splunk_TA_nix --target build/shcd/Splunk_TA_nix \
 --exclude=30-* --include=30-shcluster-apps
ksconf combine src/Splunk_TA_nix --target build/cm/Splunk_TA_nix \
 --exclude=30-* --include=30-master-apps

Say you just want the original app, for some reason:
ksconf combine src/Splunk_TA_nix --target /build/orig/Splunk_TA_nix --include=10-upstream

Using this technique you can pretty quickly write some simple shell scripts to build these all at once:

for role in shcluster master
do
 ksconf combine src/Splunk_TA_nix \
 --target build/${role}/Splunk_TA_nix \
 --exclude=30-* --include=30-${role}-apps
done

Hopefully this gives you some ideas on how you can start to build some custom workflows with just a few small shell scripts.

Layer methods

Ksconf supports different methods of layer detection mechanism.
Right now just two different schemes are supported, but if you have other ways of organizing your layers, please reach out.

	Directory.d (dir.d)
	Also known as *.d directory layout is allows layers to be embedded on a directory structure that allows for simple prioritization and labels to be applied to each layer.
Anyone who’s configured a Linux server should find this familiar.

Example: MyApp/default.d/10-my_layer/props.conf

Convention: <directory-name>.d/<##>-<layer-name>/

When these layers are combined, the top level folder is modified to remove the trailing .d, and all content from the enable layers is combined within that folder.
The layer-name portion of the path is discarded in the final combined path.
Content is combined based on the assigned ranking of each layer, or directory sort order.

	Disable (legacy)
	If you would prefer to stick with the previous behavior (no automatic detection of layers) and specify all SOURCE directories manually, then use this mode.
In this mode, each layer must be explicitly defined (or provide as a wildcard) and any other files operations must be handled elsewhere.

	Auto (default)
	In auto mode, if more than one source directory is given, then disable mode is used, if only a single directory is given then dir.d will be used.

How do I pick?

	Mode

	Useful when

	Avoid if

	dir.d

	
	Building a full app

	If you need layers in
multiple places
(default.d, and
lookups.d)

	If you sometimes have no
layers, then combine
falls back to a file copy

	
	Have existing .d folders
with other meaning

	Have multiple source
directories.

	disable

	
	Highly customized work
flows / full-control
over combination logic

	
	For app build scripts.

Examples

Merging a multilayer app

Let’s assume you have a directory structure that looks like the following.
This example features the Cisco Security Suite.

Splunk_CiscoSecuritySuite/
├── README
├── default.d
│ ├── 10-upstream
│ │ ├── app.conf
│ │ ├── data
│ │ │ └── ui
│ │ │ ├── nav
│ │ │ │ └── default.xml
│ │ │ └── views
│ │ │ ├── authentication_metrics.xml
│ │ │ ├── cisco_security_overview.xml
│ │ │ ├── getting_started.xml
│ │ │ ├── search_ip_profile.xml
│ │ │ ├── upgrading.xml
│ │ │ └── user_tracking.xml
│ │ ├── eventtypes.conf
│ │ ├── macros.conf
│ │ ├── savedsearches.conf
│ │ └── transforms.conf
│ ├── 20-my-org
│ │ └── savedsearches.conf
│ ├── 50-splunk-admin
│ │ ├── indexes.conf
│ │ ├── macros.conf
│ │ └── transforms.conf
│ └── 70-firewall-admins
│ ├── data
│ │ └── ui
│ │ └── views
│ │ ├── attacks_noc_bigscreen.xml
│ │ ├── device_health.xml
│ │ └── user_tracking.xml
│ └── eventtypes.conf
├── lookups
├── metadata
└── static

In this structure, you can see several layers of configurations at play:

	The 10-upstream layer appears to be the version of the default folder that shipped with
the Cisco app.

	The 20-my-org layer is small and only contains tweaks to a few saved search entries.

	The 50-splunk-admin layer represents local settings changes to specify index
configurations, and to augment the macros and transformations that ship with the default app.

	And finally, 70-firewall-admins contains some additional view (2 new, and 1 existing).
Note that since user_tracking.xml is not a .conf file it will fully replace the
upstream default version (that is, the file in 10-upstream)

You can merge all these layers inside this app into a new app folder using the command below:

ksconf combine repo/Splunk_CiscoSecuritySuite --target=shcluster/apps/Splunk_CiscoSecuritySuite

ksconf will automatically detect the default.d folder as a layer-containing directory and merge content from the detected layers (10-upstream, 20-my-org, …) into a new default folder in the resulting app.
All other content (such as README, bin, static, lookups and so on) will be copied as-is.

Changed in version 0.8: If you are using ksconf before 0.8, then you have to manually merge the layers, and possibly copy other top-level folders on your own (outside of ksconf).
The example below still works fine after version 0.8, but the default behavior may change in 1.0, so it’s advisable to start using --layer-method explicitly in any scripts you may use.

Here are the commands that could be used to generate a new (merged) default folder from all
of the layers shown above.

cd Splunk_CiscoSecuritySuite
ksconf combine default.d/* --target=default

Note that in the example above, the default folder now lives along side the default.d folder.
Also note that only the contents of default.d are copied, not the entire app, like in the above example.

See also

The unarchive command can be used to install or upgrade apps stored
in a version controlled system in a layer-aware manor.

Consolidating ‘users’ directories

The combine command can consolidate ‘users’ directory across several instances after a phased server migration.
See Migrating the ‘users’ folder.

ksconf diff

Compares the content differences of two .conf files

This command ignores textual differences (like order, spacing, and comments) and
focuses strictly on comparing stanzas, keys, and values. Note that spaces within
any given value, will be compared. Multi-line fields are compared in a more traditional
‘diff’ output so that long saved searches and macros can be compared more easily.

usage: ksconf diff [-h] [-o FILE] [--detail {global,stanza,key}] [--comments]
 [--format {diff,json}]
 CONF1 CONF2

Positional Arguments

	CONF1

	Left side of the comparison

	CONF2

	Right side of the comparison

Named Arguments

	-o, --output

	File where difference is stored. Defaults to standard out.

	--detail, -d

	Possible choices: global, stanza, key

Control the highest level for which ‘replace’ events may occur.

	--comments, -C

	Enable comparison of comments. (Unlikely to work consistently)

	--format, -f

	Possible choices: diff, json

Output file format to produce. ‘diff’ the the classic format used by default. ‘json’ is helpful when trying to review changes programmatically.

Example

Add screenshot here

To use ksconf diff as an external diff tool, check out Ksconf as external difftool.

ksconf filter

Filter the contents of a conf file in various ways. Stanzas can be included
or excluded based on a provided filter or based on the presence or value of a key.

Where possible, this command supports GREP-like arguments to bring a familiar feel.

usage: ksconf filter [-h] [-o FILE] [--comments] [--verbose] [--skip-broken]
 [--match {regex,wildcard,string}] [--ignore-case]
 [--invert-match] [--files-with-matches]
 [--count | --brief] [--stanza PATTERN]
 [--attr-present ATTR] [--attr-matches ATTR PATTERN]
 [--attr-not-matches ATTR PATTERN] [-e | -d]
 [--keep-attrs WC-ATTR] [--reject-attrs WC-ATTR]
 CONF [CONF ...]

Positional Arguments

	CONF

	Input conf file

Named Arguments

	-o, --output

	File where the filtered results are written. Defaults to standard out.

	--comments, -C

	Preserve comments. Comments are discarded by default.

	--verbose

	Enable additional output.

	--skip-broken

	Skip broken input files. Without this things like duplicate stanzas and invalid entries will cause processing to stop.

	--match, -m

	Possible choices: regex, wildcard, string

Specify pattern matching mode.
Defaults to ‘wildcard’ allowing for * and ? matching.
Use ‘regex’ for more power but watch out for shell escaping.
Use ‘string’ to enable literal matching.

	--ignore-case, -i

	Ignore case when comparing or matching strings.
By default matches are case-sensitive.

	--invert-match, -v

	Invert match results.
This can be used to show what content does NOT match,
or make a backup copy of excluded content.

Output mode

Select an alternate output mode.
If any of the following options are used, the stanza output is not shown.

	--files-with-matches, -l

	List files that match the given search criteria

	--count, -c

	Count matching stanzas

	--brief, -b

	List name of matching stanzas

Stanza selection

Include or exclude entire stanzas using these filter options.

All filter options can be provided multiple times.
If you have a long list of filters, they can be saved in a file and referenced using
the special file:// prefix. One entry per line. Entries can be either a
literal strings, wildcards, or regexes, depending on MATCH.

	--stanza

	Match any stanza who’s name matches the given pattern.
PATTERN supports bulk patterns via the file:// prefix.

	--attr-present

	Match any stanza that includes the ATTR attribute.
ATTR supports bulk attribute patterns via the file:// prefix.

	--attr-matches, --attr-eq

	Match any stanza containing ATTR == PATTERN.
PATTERN supports the special file://filename syntax. Matching can be a direct
string comparison (equals), or a regex and wildcard match.

Note that all --attr-match and --attr-not-match arguments are matched together.
For a stanza to match, all rules must apply.
If attr is missing from a stanza, the value becomes an empty string for matching purposes.

	--attr-not-matches, --attr-ne

	Match any stanza containing ATTR != PATTERN.
See --attr-matches for additional details.

	-e, --enabled-only

	Keep only enabled stanzas. Any stanza containing disabled = 1 will be removed.
The value of disabled is assumed to be false by default.

	-d, --disabled-only

	Keep disabled stanzas only.
The value of the disabled attribute is interpreted as a boolean.

Attribute selection

Include or exclude attributes passed through.
By default, all attributes are preserved.
Allowlist (keep) operations are preformed before blocklist (reject) operations.

	--keep-attrs

	Select which attribute(s) will be preserved.
This space separated list of attributes indicates what to preserve.
Supports wildcards.

	--reject-attrs

	Select which attribute(s) will be discarded.
This space separated list of attributes indicates what to discard.
Supports wildcards.

How is this different that btool?

Some of the things filter can do functionally overlaps with btool list. Take for example:

ksconf filter search/default/savedsearches.conf --stanza "Messages by minute last 3 hours"

Is essentially the same as:

splunk btool --app=search savedsearches list "Messages by minute last 3 hours"

The output is the same, assuming that you didn’t overwrite any part of that search in local.
But if you take off the --app argument, you’ll quickly see that btool is merging all the layers
together to show the final value of all attributes. That is certainly a helpful thing to do,
but not always what you want.

Ksconf is only going to look at the file you explicitly pointed it to. It doesn’t traverse the
tree on it’s own. This means that it works on app directory structure that live inside or outside
of your Splunk instance. If you’ve ever tried to run btool check on an app that you haven’t
installed yet, then you’ll understand the value of this.

In many other cases, the usage of both ksconf filter and btool differ significantly.

Note

What if I want a filter default & local at the same time?

In situations where it would be beneficial to filter based on the combined view of default and local, then simply use ksconf_cmd_merge first.
Here are two options.

Option 1: Use a named temporary file

ksconf merge search/{default,local}/savedsearches.conf > savedsearches.conf
ksconf filter savedsearches.conf - --stanza "* last 3 hours"

Option 2: Chain both commands together

ksconf merge search/{default,local}/savedsearches.conf | ksconf filter --stanza "* last 3 hours"

Examples

Searching for attribute/values combinations

Find all enabled input stanzas with a sourcetype prefixed with apache:.

ksconf filter etc/apps/*/{default,local}/inputs.conf \
 --enabled-only --attr-eq sourcetype 'apache:*'

List the names of saved searches using potentially expensive search commands:

ksconf filter etc/apps/*/{default,local}/savedsearches.conf \
 -b --match regex \
 --attr-eq search '.*\|\s*(streamstats|transaction) .*'

Show sourcetype stanzas where EVENT_BREAKER is defined but not enabled:

ksconf filter etc/deployment-apps/*/{default,local}/props.conf \
 --skip-broken --match regex \
 --attr-match-equals EVENT_BREAKER '.+' \
 --attr-match-not-equals EVENT_BREAKER_ENABLE '(true|1)'

Note that both conditions listed must match for a stanza to match. Logical ‘AND’ not an ‘OR’. Also note the use of --skip-broken because sometimes Splunk base apps have invalid conf files.

Lift and shift

Copy all indexes defined within a specific app.

cd $SPLUNK_DB
for idx in $(ksconf filter $SPLUNK_HOME/etc/app/MyApp/default/indexes.conf --brief)
do
 echo "Copy index ${idx}"
 tar -czf "/migrate/export-${idx}" "${idx}"
done

Now you’ll have a copy all of the necessary indexes in the /migrate folder to make MyApp work on another Splunk instance.
Of course, there’s likely other migration tasks to consider, like copying the actual app. This is just one way ksconf can help.

Can I do the same thing with standard unix tools?

Sure, go for it!

Yes, there’s significant overlap with the filter command and what you can do with grep,
awk, or sed. Much of that is on purpose, and in fact some command line
arguments were borrowed.

I used to do these tasks by hand, but it’s easy to make mistakes. The idea of ksconf is to
give you stable and reliable tools that are more suitable for .conf file work. Also keep in
mind that these features are expanding much more quickly than the unix tools change.

Although, if you’ve had to deal with BSD vs GNU tools and trying to find a set of common arguments,
then you probably already appreciate how awesome a domain-specific-tool like this is.

ksconf merge

Merge two or more .conf files into a single combined .conf file.
This is similar to the way that Splunk logically combines the default and local
folders at runtime.

usage: ksconf merge [-h] [--target TARGET] [--ignore-missing] [--in-place]
 [--dry-run] [--banner BANNER]
 conf [conf ...]

Positional Arguments

	conf

	The source configuration file(s) to collect settings from.

Named Arguments

	--target, -t

	Destination file for merged configurations.
If not provided, the merged conf is written to standard output.

	--ignore-missing, -s

	Silently ignore any missing CONF files.

	--in-place, -i

	Enable in-place update mode. When selected, the TARGET file will also be considered as
the base of the merge operation. All CONF files will be merged with TARGET.
When disabled, any existing content within TARGET is ignored and overwritten.

The --in-place option was added in v0.12.1.
In earlier version of ksconf, and moving forward, this same behavior can be accomplished by simply listing the target twice.
Once as in the --target option, and then a second time as the first CONF file.

	--dry-run, -D

	Enable dry-run mode.
Instead of writing to TARGET, preview changes in ‘diff’ format.
If TARGET doesn’t exist, then show the merged file.

	--banner, -b

	A banner or warning comment added to the top of the TARGET file.
Used to discourage Splunk admins from editing an auto-generated file.

Examples

Here is an elementary example that merges all props.conf file from all of your technology addons into a single output file:

ksconf merge --target=all-ta-props.conf etc/apps/*TA*/{default,local}/props.conf

See an expanded version of this example here: Building an all-in one TA for your indexing tier

ksconf minimize

See also

See the Minimizing files for background on why this is important.

Minimize a conf file by removing any duplicated default settings.

Reduce a local conf file to only your intended changes without manually tracking
which entries you’ve edited. Minimizing local conf files makes your local
customizations easier to read and often results in cleaner upgrades.

usage: ksconf minimize [-h] [--target TARGET] [--dry-run | --output OUTPUT]
 [--explode-default] [-k PRESERVE_KEY]
 CONF [CONF ...]

Positional Arguments

	CONF

	The default configuration file(s) used to determine what base settings are. The base settings determine what is unnecessary to repeat in target file.

Named Arguments

	--target, -t

	The local file that you wish to remove duplicate settings from. This file will be read from and then replaced with a minimized version.

	--dry-run, -D

	Enable dry-run mode. Instead of writing and minimizing the TARGET file, preview what would be removed as a ‘diff’.

	--output

	Write the minimized output to a separate file instead of updating TARGET.

This option can be used to preview the actual changes.
Sometimes if --dry-run mode produces too much output, it’s helpful to look at the
actual minimized version of the file in concrete form (rather than a relative format, like
a diff.)
This may also be helpful in other workflows.

	--explode-default, -E

	Enable minimization across stanzas for special use-cases. Helpful when dealing with stanzas downloaded from a REST endpoint or btool list output.

This mode will not only minimize the same stanza across multiple config files, it will
also attempt to minimize any default values stored in the [default] or global stanza
as well.
For this to be effective, it’s often necessary to include system-level defaults in the CONF list.
For example, to trim out cruft in savedsearches.conf, make sure you add
etc/system/default/savedsearches.conf as an input.

	-k, --preserve-key

	Specify attributes that should always be kept.

Example usage

cd Splunk_TA_nix
cp default/inputs.conf local/inputs.conf

Edit 'disabled' and 'interval' settings in-place
vi local/inputs.conf

Remove all the extra (unmodified) bits
ksconf minimize --target=local/inputs.conf default/inputs.conf

Undoing a minimize

You can use ksconf merge to reverse the effect of minimize by running a command like so:

ksconf merge default/inputs.conf local/inputs.conf

Additional capabilities

For special cases, the --explode-default mode reduces duplication between entries in normal stanzas (as normal) and
then additionally reduces duplication between individual stanzas and default entries.
Typically you only need this mode if your dealing with a conf file that’s been fully expanded to include all the layers,
which doesn’t happen under normal circumstances.
This does happen anytime you download a stanza from a REST endpoint or munged together output from btool list.
If you’ve ever done this with savedsearches.conf stanzas, you’ll be painfully aware of how massive they are!
This is the exact use case that --explode-default was written for.

In such a case, it may be helpful to minimize against the full definition of default, which effectively requires looking at all the layers of default.
This includes all global app settings, and system-level settings.

There are limitations to this approach.

	You have to manually list out all the layers.
(Sometimes just pointing to the system-level defaults is good enough)

	Minimize doesn’t take namespace into account.
This means ownership, sharing, and ACLs are ignored.

In many ways minimize mimics what Splunk does every time it updates a conf file, as discussed in How Splunk writes to conf files.
If you find yourself frequently needing the power of --explode-default,
at some point a potentially better approach may be to simply post stanzas to the REST endpoint.
However, this typically does a good enough job, especially for offline scenarios.

Additionally, this command doesn’t strictly require a bloated file.
For example, if disabled = 0 is both a global default, and set on a per-stanza basis, that could be reduced too.
However, typically this isn’t super helpful.

ksconf package

Create a Splunk app or add on tarball (.spl) file from an app directory.

ksconf package can do useful things like, exclude unwanted files, combine layers, set the
application version and build number, drop or promote the local directory into default.

Note that some arguments, like the FILE support special values that can be automatically
evaluated at runtime. For example the placeholders {{version}} or {{git_tag}} can be
expanded into the output tarball filename.

If both layering and templating are in use at the same time, be aware that templates are
rendered prior to layering operations. This allows, for example, one layer to include a simple
indexes.conf file and another layer to include an indexes.conf.j2 template.

usage: ksconf package [-h] [-f SPL] [--app-name APP_NAME]
 [--blocklist BLOCKLIST] [--allowlist ALLOWLIST]
 [--layer-method {dir.d,disable}] [-I PATTERN]
 [-E PATTERN] [--enable-handler {jinja}]
 [--template-vars TEMPLATE_VARS] [--follow-symlink]
 [--set-version VERSION] [--set-build BUILD]
 [--allow-local | --block-local | --merge-local]
 [--release-file RELEASE_FILE]
 SOURCE

Positional Arguments

	SOURCE

	Source directory for the Splunk app.

Named Arguments

	-f, --file

	Name of splunk app file (tarball) to create. Placeholder variables in {{var}} syntax can be used here.

	--app-name

	Specify the top-level app folder name. If this is not given, the app folder name is automatically extracted from the basename of SOURCE. Placeholder variables, such as {{app_id}} can be used here.

	--blocklist, -b

	Pattern for files/directories to exclude. Can be given multiple times. You can load multiple exclusions from disk by using file://path which can be used with .gitignore for example. (Default includes: .git*, *.py[co], __pycache__, .DS_Store)

	--allowlist, -a

	Remove a pattern that was previously added to the blocklist.

	--enable-handler

	Possible choices: jinja

Enable optional file handling support

	--template-vars

	Set template variables as key=value or YAML/JSON, if filename prepend with @

	--follow-symlink, -l

	Follow symbolic links pointing to directories. Symlinks to files are always followed.

	--set-version

	Set application version. By default the application version is read from default/app.conf. Placeholder variables such as {{git_tag}} can be used here.

	--set-build

	Set application build number.

	--allow-local

	Allow the local folder to be kept as-is WARNING: This goes against Splunk packaging practices, and will cause AppInspect to fail. However, this option can be useful for private package transfers between servers, app backups, or other admin-like tasks.

	--block-local

	Block the local folder and local.meta from the package.

	--merge-local

	Merge any files in local into the default folder during packaging. This is the default behavior.

Layer filtering

If the app being packaged includes multiple layers, these arguments can be used to control which ones should be included in the final app file. If no layer options are specified, then all layers will be included.

	--layer-method

	Possible choices: dir.d, disable

Set the layer type used by SOURCE. Additional description provided in in the combine command.

	-I, --include

	Name or pattern of layers to include.

	-E, --exclude

	Name or pattern of layers to exclude from the target.

Advanced Build Options

The following options are for more advanced app building workflows.

	--release-file

	Write the path of the newly generated archive file (SPL) after the archive is written. This is useful in build scripts when the SPL contains variables so the final name may not be known ahead of time.

Variables

The following variables are currently available for use during package building.
These are referenced using the {{var}} syntax.
See the implementation in AppVarMagic if you’d like to contribute additional variables.

Supported Variables

	Variable

	Source

	Notes

	app_id

	app.conf

	Get id from [package] in app.conf. This must be the app folder name for any app published to Splunkbase.

	build

	app.conf

	Get build from [install] in app.conf

	version

	app.conf

	Get version from [launcher] in app.conf

	git_tag

	git

	Run git describe --tags --always --dirty. Common prefixes are removed such as v or release- from the tag name.

	git_last_rev

	git

	Run git log -n1 --pretty=format:%h -- .

	git_head

	git

	Run git rev-parse --short HEAD

	layers_list

	layers

	List of unique ksconf layers used to build the app. Layers are separated by an double underscores (__). If no layers were used then an empty string is returned.

	layers_hash

	layers

	Unique hash of unique ksconf layers used. This is a truncated SHA256 of the layers_list variable.

Example

ksconf package -f my_app.tgz MyApp

A more realistic example where the version number in app.conf is managed by some external process, possibly a tool like bumpversion.

bumpversion minor
ksconf package MyApp \
 --set-version={{git_tag}} \
 -f dist/my_app-{{version}}.tgz \
 --release-file=.artifact
echo "Build complete, upload $(<.artifact) to SplunkBase"

This will output a message like: Build complete, upload dist/my_app-1.3.0.tgz to SplunkBase

And of course this workflow could be further automated using Splunkbase API calls.

See also

More sophisticated builds can be achieved using the BuildManager

ksconf promote

Propagate .conf settings applied in one file to another. Typically this is used
to move local changes (made via the UI) into another layer, such as the
default or a named default.d/50-xxxxx) folder.

Promote has two modes: batch and interactive. In batch mode, all changes are
applied automatically and the (now empty) source file is removed. In interactive
mode, the user is prompted to select stanzas to promote. This way local changes
can be held without being promoted.

NOTE: Changes are MOVED not copied, unless --keep is used.

usage: ksconf promote [-h] [--batch | --interactive | --summary | --diff]
 [--verbose] [--match {regex,wildcard,string}]
 [--ignore-case] [--invert-match] [--stanza PATTERN]
 [--force] [--keep] [--keep-empty]
 SOURCE TARGET

Positional Arguments

	SOURCE

	The source configuration file to pull changes from. (Typically the local conf file)

	TARGET

	Configuration file or directory to push the changes into.
(Typically the default folder)

Named Arguments

	--batch, -b

	Use batch mode where all configuration settings are automatically promoted.
All changes are removed from source and applied to target.
The source file will be removed unless
--keep-empty is used.

	--interactive, -i

	Enable interactive mode where the user will be prompted to approve
the promotion of specific stanzas and attributes.
The user will be able to apply, skip, or edit the changes being promoted.

	--summary, -s

	Summarize content that could be promoted.

	--diff, -d

	Show the diff of what would be promoted.

	--verbose

	Enable additional output.

	--force, -f

	Disable safety checks. Don’t check to see if SOURCE and TARGET share the same basename.

	--keep, -k

	Keep conf settings in the source file.
All changes will be copied into the TARGET file instead of being moved there.
This is typically a bad idea since local always overrides default.

	--keep-empty

	Keep the source file, even if after the settings promotions the file has no content.
By default, SOURCE will be removed after all content has been moved into TARGET.
Splunk will re-create any necessary local files on the fly.

Automatic filtering options

Include or exclude stanzas to promote using these filter options.
Stanzas selected by these filters will be promoted.

All filter options can be provided multiple times.
If you have a long list of filters, they can be saved in a file and
referenced using the special file:// prefix. One entry per line.

	--match, -m

	Possible choices: regex, wildcard, string

Specify pattern matching mode.
Defaults to ‘wildcard’ allowing for * and ? matching.
Use ‘regex’ for more power but watch out for shell escaping.
Use ‘string’ to enable literal matching.

	--ignore-case

	Ignore case when comparing or matching strings.
By default matches are case-sensitive.

	--invert-match, -v

	Invert match results.
This can be used to prevent content from being promoted.

	--stanza

	Promote any stanza with a name matching the given pattern.
PATTERN supports bulk patterns via the file:// prefix.

Warning

The promote command moves configuration settings between SOURCE and TARGET and therefore
both files are updated. This is unlike most other commands where only TARGET is modified.
Using the --keep argument will prevent SOURCE from being updated.

Modes

Promote has different modes:

	Batch mode
	Changes are applied automatically and the (now empty) source file is removed by default.
The source file can be retained by using either the --keep or --keep-empty arguments, see descriptions above.

	Interactive mode
	Prompts the user to pick which stanzas and attributes to integrate.
In practice, it’s common that not all local changes will be ready to be promoted and committed at the same time.

Hint

This mode was inspired by git add --patch command.

	Summary mode
	Shows the user a brief breakdown of what stanzas are available for promotion.
This can be used to simply the use of the --stanza filtering options (automatic promotion) to show the names of stanzas available for promotion.
Note that when --summary and --stanza are used at the same time, then the summary output will include any output not already matched by --stanza filter.

	Default
	If you haven’t specified either batch or interactive mode, you’ll be asked to pick one at startup.
You’ll be given the option to show a diff, apply all changes, or be prompted to keep or reject changes interactively.

Automated promotions

Ksconf 0.7.8 added support for automatic stanza matching and promotion using a ksconf filter-like CLI options.

Key features include:

	Automatic promotion of stanzas
	One or more named stanzas can be promoted automatically using the --stanza argument.
This argument can be given multiple times to match multiples stanzas at once.
In batch mode, only the named stanzas will be promoted;
but in interactive mode, the named stanzas will be promoted first, and any content remaining to be promoted can be handled interactively.

	Matching mode
	Like with the ksconf filter command, multiple methods of matching are supported.
This includes: string matching (default), wildcard (or “glob”) matching, and regular expressions.

	Inversion
	The --invert-match option allows for the selection to be inverted.
In this mode, it’s possible to select which stanzas should not be promoted.
This can be used as a blocklist to prevent accidental promotions.

Safety checks

Moving content between files is a potentially risky operation.
Here are some of the safety mechanisms that ksconf has in place to prevent data loss.

Tip

Pairing ksconf with a version control tool like git, while not required, does provide another layer of protection against loss or corruption.
If you promote and commit changes frequently, then the scope of potential loss is reduced.

	Syntax checking
	Strong syntax checking is enabled for both SOURCE and TARGET to prevent mistakes, such as dangling or duplicate stanzas,
which could lead to even more corruption.

	File fingerprinting
	Various attributes of the SOURCE and TARGET files are captured at startup and compared again before any changes are written to disk.
This reduces the possibility of a race-condition on a live Splunk system.
This mostly impacts interactive mode because the session lasts longer.
If this is a concern, run promote only when Splunk is offline.

	Same file check
	Attempts to promote content from a file to itself are prevented.
While logically no one would want to do this, in practice having a clear error message saves time and confusion.

	Base name check
	The SOURCE and TARGET should share the same base name.
In other words, trying to promote from inputs.conf into props.conf (due to a typo) will be prevented.
This matters more in batch mode.
In interactive mode, it should be pretty obvious that the type of entries don’t make sense and therefore the user can simply exit without saving.

For scripting purposes, there may be times where pushing changes between arbitrary-named files is helpful, so this check can be bypassed by using the --force argument.

Note

Unfortunately, the unit testing coverage for the promote command is quite low.
This is primarily because I haven’t yet figured out how to handle unit testing for interactive CLI tools (as this is the only interactive command to date.)
I’m also not sure how much the UI may change;
Any assistance in this area would be greatly appreciated.

Examples

A simple promotion looks like this.

ksconf promote local/props.conf default/props.conf

This is equivalent to this minor shortcut.

ksconf promote local/props.conf default

In this case, ksconf determines that default is a directory and therefore assumes that you want the same filename, props.conf in this case.

Tip

Using a directory as TARGET may seem like a trivial improvement, but in practice it greatly reduces accidental cross-promotion of content. Therefore, we suggest its use.

Similarly, a shortcut for pushing between metadata files exists:

ksconf promote metadata/local.meta metadata

A few example of automatic promotion of a named stanza:

Single stanzas
ksconf promote local/savedsearches.conf default --stanza "My fancy search"

Wildcard promote all prod server alerts
ksconf promote local/savedsearches.conf default --match wildcard --stanza "Server PRD* Alert"

Automatically promote everything except for one search:
ksconf promote local/savedsearches.conf default --batch --invert-match --stanza "Local test"

Interactive mode

Keyboard shortcuts

	Key

	Meaning

	Description

	y

	Yes

	Apply changes

	n

	No

	Don’t apply

	d

	Diff

	Show the difference between the file or stanza.

	q

	Quit

	Exit program. Don’t save changes.

Limitations

	Currently, an attribute-level section has not be implemented.
Entire stanzas are either kept local or promoted fully.

	Interactive mode currently lacks “help”.
In the meantime, see the keyboard shortcuts listed above.

	At present, comments in the SOURCE file will not be preserved.

	If SOURCE or TARGET is modified externally while promote is running, the entire operation will be aborted, thus loosing any custom selections you made in interactive mode.
This needs improvement.

	There’s currently no way to preserve certain local settings with some kind of “never-promote” flag.
It’s not uncommon to have some settings in inputs.conf, for example, that you never want to promote.

	There is no dry-run mode supported. Primarily, this is because it would only work for batch mode, and in interactive mode you explicitly see exactly what will be changed before anything is applied.
(If you really need a dry-run for batch mode, use ksconf merge to show the result of TARGET SOURCE combined.)

ksconf rest-export

Deprecated since version 0.7.0: You should consider using ksconf rest-publish instead of this one.
The only remaining valid use case for rest-export (this command) is for disconnected scenarios.
In other words, if you need to push stanzas to a Splunkd instance where you don’t (and can’t) install ksconf,
then this command may still be useful to you.
In this case, ksconf rest-export can create a shell script that you can transfer to the correct network,
and then run the shell script.
But for ALL other use cases, the rest-publish command is superior.

Build an executable script of the stanzas in a configuration file that can be later applied to
a running Splunk instance via the Splunkd REST endpoint.

This can be helpful when pushing complex props and transforms to an instance where you only have
UI access and can’t directly publish an app.

usage: ksconf rest-export [-h] [--output FILE] [--disable-auth-output]
 [--pretty-print] [-u | -D] [--url URL] [--app APP]
 [--user USER] [--owner OWNER] [--conf TYPE]
 [--extra-args EXTRA_ARGS]
 CONF [CONF ...]

Positional Arguments

	CONF

	Configuration file(s) to export settings from.

Named Arguments

	--output, -t

	Save the shell script output to this file. If not provided, the output is written to standard output.

	-u, --update

	Assume that the REST entities already exist. By default, output assumes stanzas are being created.

	-D, --delete

	Remove existing REST entities. This is a destructive operation.
In this mode, stanza attributes are unnecessary and ignored.
NOTE: This works for ‘local’ entities only; the default folder cannot be updated.

	--url

	URL of Splunkd. Default: “https://localhost:8089”

	--app

	Set the namespace (app name) for the endpoint

	--user

	Deprecated. Use –owner instead.

	--owner

	Set the object owner. Typically, the default of ‘nobody’ is ideal if you want to share the configurations at the app-level.

	--conf

	Explicitly set the configuration file type. By default, this is derived from CONF, but
sometimes it’s helpful to set this explicitly. Can be any valid Splunk conf file type.
Examples include: ‘app’, ‘props’, ‘tags’, ‘savedsearches’, etc.

	--extra-args

	Extra arguments to pass to all CURL commands.
Quote arguments on the command line to prevent confusion between arguments to ksconf vs
curl.

Output Control

	--disable-auth-output

	Turn off sample login curl commands from the output.

	--pretty-print, -p

	Enable pretty-printing.
Make shell output a bit more readable by splitting entries across lines.

Warning

For interactive use only!

This command is indented for manual admin workflows. It’s quite possible that shell escaping
bugs exist that may allow full shell access if you put this into an automated workflow. Evaluate
the risks, review the code, run as a least-privilege user, and be responsible.

Roadmap

For now, the assumption is that curl command will be used. (Patches to support the Power Shell
Invoke-WebRequest cmdlet would be greatly welcomed!)

Example

ksconf rest-export --output=apply_props.sh etc/app/Splunk_TA_aws/local/props.conf

ksconf rest-publish

Note

This command effectively replaces ksconf rest-export for nearly all use cases.
The only thing that rest-publish can’t do that rest-export can, is handle a disconnected scenario.
But for ALL other use cases, the rest-publish (this command) command is far superior.

Note

This commands requires the Splunk Python SDK, which is automatically bundled with the Splunk app for KSCONF.

Publish stanzas in a .conf file to a running Splunk instance via REST. This requires access to
the HTTPS endpoint of Splunk. By default, ksconf will handle both the creation of new stanzas
and the update of existing stanzas.

This can be used to push full configuration stanzas where you only have REST access and can’t
directly publish an app.

Only attributes present in the conf file are pushed. While this may seem obvious, this fact can
have profound implications in certain situations, like when using this command for continuous
updates. This means that it’s possible for the source .conf to ultimately differ from what ends
up on the server’s .conf file. One way to avoid this, is to explicitly remove an object using
--delete mode first, and then insert a new copy of the object. Of course, this means that
the object will be unavailable. The other impact is that diffs only compares and shows a subset
of attribute.

Be aware, that for consistency, the configs/conf-TYPE endpoint is used for this command.
Therefore, a reload may be required for the server to use the published config settings.

usage: ksconf rest-publish [-h] [--conf TYPE] [-m META] [--url URL]
 [--user USER] [--pass PASSWORD] [-k]
 [--session-key SESSION_KEY] [--app APP]
 [--owner OWNER] [--sharing {user,app,global}] [-D]
 CONF [CONF ...]

Positional Arguments

	CONF

	Configuration file(s) to export settings from.

Named Arguments

	--conf

	Explicitly set the configuration file type. By default, this is derived from CONF, but
sometimes it’s helpful to set this explicitly. Can be any valid Splunk conf file type.
Examples include: ‘app’, ‘props’, ‘tags’, ‘savedsearches’, etc.

	-m, --meta

	Specify one or more .meta files to determine the desired read & write ACLs, owner, and sharing for objects in the CONF file.

	--url

	URL of Splunkd. Default: “https://localhost:8089”

	--user

	Login username Splunkd. Default: “admin”

	--pass

	Login password Splunkd. Default: “changeme”

	-k, --insecure

	Disable SSL cert validation.

	--session-key

	Use an existing session token instead of using a username and password to login.

	--app

	Set the namespace (app name) for the endpoint

	--owner

	Set the user who owns the content. The default of ‘nobody’ works well for app-level sharing.

	--sharing

	Possible choices: user, app, global

Set the sharing mode.

	-D, --delete

	Remove existing REST entities. This is a destructive operation.
In this mode, stanza attributes are unnecessary.
NOTE: This works for ‘local’ entities only; the default folder cannot be updated.

Examples

A simple example:

ksconf rest-publish etc/app/Splunk_TA_aws/local/props.conf \
 --user admin --password secret --app Splunk_TA_aws --owner nobody --sharing global

This command also supports replaying metdata like ACLs:

ksconf rest-publish etc/app/Splunk_TA_aws/local/props.conf \
 --meta etc/app/Splunk_TA_aws/metdata/local.meta \
 --user admin --password secret --app Splunk_TA_aws

ksconf snapshot

Build a static snapshot of various configuration files stored within a structured json export
format. If the .conf files being captured are within a standard Splunk directory structure,
then certain metadata and namespace information is assumed based on typical path locations.
Individual apps or conf files can be collected as well, but less metadata may be extracted.

usage: ksconf snapshot [-h] [--output FILE] [--minimize] PATH [PATH ...]

Positional Arguments

	PATH

	Directory from which to load configuration files. All .conf and .meta file are included recursively.

Named Arguments

	--output, -o

	Save the snapshot to the named files. If not provided, the snapshot is written to
standard output.

	--minimize

	Reduce the size of the JSON output by removing whitespace. Reduces readability.

Warning

Output NOT stable!

The output from this command hasn’t really been tested in any kind of serious way for usability.
Consider this a proof-of-concept.
Anyone interested in this type of functionality should reach out to discuss uses cases.

Example

ksconf snapshot --output=daily-$(date +%Y-%m-%d).json $SPLUNK_HOME/etc/app/

ksconf sort

Sort a Splunk .conf file. Sort has two modes: (1) by default, the sorted
config file will be echoed to the screen. (2) the config files are updated
in-place when the -i option is used.

Manually managed conf files can be protected against changes by adding a comment containing the
string KSCONF-NO-SORT to the top of any .conf file.

usage: ksconf sort [-h] [--target FILE | --inplace] [-F] [-q] [-n LINES]
 FILE [FILE ...]

Positional Arguments

	FILE

	Input file to sort, or standard input.

Named Arguments

	--target, -t

	File to write results to. Defaults to standard output.

	--inplace, -i

	Replace the input file with a sorted version.

WARNING: This a potentially destructive operation that
may move/remove comments.

	-n, --newlines

	Number of lines between stanzas.

In-place update arguments

	-F, --force

	Force file sorting for all files, even for files containing the special
‘KSCONF-NO-SORT’ marker.

	-q, --quiet

	Reduce the output.
Reports only updated or invalid files.
This is useful for pre-commit hooks, for example.

See also

Pre-commit hooks

See Pre-commit hooks for more information about how the sort command can be easily integrated in your git workflow.

Examples

To recursively sort all files

find . -name '*.conf' | xargs ksconf sort -i

ksconf unarchive

Install or overwrite an existing app in a git-friendly way.
If the app already exists, steps will be taken to upgrade it safely.

The default folder can be redirected to another path (i.e., default.d/10-upstream or
other desirable path if you’re using the ksconf combine tool to manage extra layers).

usage: ksconf unarchive [-h] [--dest DIR] [--app-name NAME]
 [--default-dir DIR] [--exclude EXCLUDE] [--keep KEEP]
 [--allow-local]
 [--git-sanity-check {off,changed,untracked,ignored}]
 [--git-mode {nochange,stage,commit}] [--no-edit]
 [--git-commit-args GIT_COMMIT_ARGS]
 SPL

Positional Arguments

	SPL

	The path to the archive to install.

Supports tarballs (.tar.gz, .spl), and less-common zip files (.zip)

Named Arguments

	--dest

	Set the destination path where the archive will be extracted.
By default, the current directory is used. Sane values include: etc/apps,
etc/deployment-apps, and so on.

Often this will be a git repository working tree where Splunk apps are stored.

	--app-name

	The app name to use when expanding the archive.
By default, the app name is taken from the archive as the top-level path included
in the archive (by convention).

Expanding archives that contain multiple (ITSI) or nested apps (NIX, ES) is not supported.

	--default-dir

	Name of the directory where the default contents will be stored.
This is a useful feature for apps that use a dynamic default directory
that’s created and managed by the ‘combine’ mode.

	--exclude, -e

	Add a file pattern to exclude from extraction.
Splunk’s pseudo-glob patterns are supported here.
* for any non-directory match,
... for ANY (including directories),
and ? for a single character.

	--keep, -k

	Specify a pattern for files to preserve during an upgrade.
Repeat this argument to keep multiple patterns.

	--allow-local

	Allow local/* and local.meta files to be extracted from the archive.

Shipping local files is a Splunk app packaging violation so local files are blocked
to prevent customizations from being overridden.

	--git-sanity-check

	By default, git status is run on the destination folder to detect working tree or
index modifications before the unarchive process starts, but this is configurable.
Sanity check choices go from least restrictive to most thorough:

	Use off to prevent any ‘git status’ safety checks.

	Use changed to abort only upon local modifications to files tracked by git.

	Use untracked (the default) to look for changed and untracked files before
considering the tree clean.

	Use ignored to enable the most intense safety check which will abort if local
changes, untracked, or ignored files are found.

	--git-mode

	Possible choices: nochange, stage, commit

Set the desired level of git integration.
The default mode is stage, where new, updated, or removed files are automatically
handled for you.

To prevent any git add or git rm commands from being run, pick the
‘nochange’ mode.

If a git commit is incorrect, simply roll it back with git reset or fix it with a
git commit --amend before the changes are pushed anywhere else. There’s no native
--dry-run or undo for unarchive mode because that’s why you’re using git in the first
place, right? (Plus, such features would require significant overhead and unit testing.)

	--no-edit

	Tell git to skip opening your editor on commit.
By default, you will be prompted to review/edit the commit message.
(Git Tip: Delete the content of the default message to abort the commit.)

	--git-commit-args, -G

	Extra arguments to pass to ‘git’

Note

What if I’m not using version control?

Sanity checks and commit modes are automatically disabled if the app is being installed into a directory that is not contained within a git working tree.
Ksconf confirms that git is present and functional before running sanity checks.

ksconf xml-format

Normalize and apply consistent XML indentation and CDATA usage for XML dashboards and
navigation files.

Technically this could be used on any XML file, but certain element names specific to Splunk’s
simple XML dashboards are handled specially, and therefore could result in unusable results.

The expected indentation level is guessed based on the first element indentation, but can be
explicitly set if not detectable.

usage: ksconf xml-format [-h] [--indent INDENT] [--quiet] FILE [FILE ...]

Positional Arguments

	FILE

	One or more XML files to check.
If ‘-’ is given, then a list of files is read from standard input

Named Arguments

	--indent

	Number of spaces. This is only used if indentation cannot be guessed from the existing file.

	--quiet, -q

	Reduce the volume of output.

See also

Pre-commit hooks

See Pre-commit hooks for more information about how the xml-format command can be
integrated in your git workflow.

NOTE: While it may work on other XML files, it hasn’t been tested for other files, and therefore is not recommended as a general-purpose XML formatter.
Specific awareness of various Simple XML tags is baked into this product.

Note

This command requires the external lxml Python module.

This package was specifically selected (over the built-in ‘xml.etree’ interface) because it
(1) supports round-trip preservation of CDATA blocks, and
(2) already ships with Splunk’s embedded Python.

This is an optional requirement, unless you want to use the xml-format command.

As of v0.12.0, this is not longer installed by the ksconf package.
However, if you are using pre-commit hooks from the ksconf-pre-commit repo [https://github.com/Kintyre/ksconf-pre-commit] for the ksconf-xml-format hook.

Why is this important?

TODO: Note the value of using <!CDATA[[]]> blocks.

Value of consistent indentation.

To recursively format xml files

find . -path '*/data/ui/views/*.xml' -o -path '*/data/ui/nav/*.xml' | ksconf xml-format -

Cheat Sheet

Here’s a quick rundown of handy ksconf commands:

Note

Note that for clarity, most of the command line arguments are given in their long form.

Long commands may be broken across line for readability. When this happens, a trailing
backslash (\) is shown. This can be copied verbatim into many shells.

Sorry ebook users.
Trailing (\) probably will not look right on your screen.
But then again, you probably won’t be copy-n-pasting from your Kindle.

Contents

	Cheat Sheet

	General purpose

	Extracting a single value

	Updating a single value

	Comparing files

	Sorting content

	Extract specific stanza

	Remove unwanted settings

	List apps configured in the deployment server

	Find saved searches with earliest=-1d@d

	Cleaning up

	Reduce cruft in local

	Pushing local changes to default

	Packaging and building apps

	Quick package and install

	Advanced usage

	Migrating content between apps

	Migrating the ‘users’ folder

	Maintaining apps stored in a local git repository

	Putting it all together

	Pulling out a stanza defined in both default and local

	Building an all-in one TA for your indexing tier

General purpose

Extracting a single value

Grabbing the definition of a single macro using ksconf attr-get.
Note in the case of a complex or multi-line expression, any line continuation characters will be removed.

ksconf attr-get macros.conf --stanza 'unroll_json_array(6)' --attribute definition

Updating a single value

Suppose you have a macro called mydata_index that defines the source indexes for your dashboards.
The following command uses ksconf attr-set to update that macro directly from the CLI without opening an editor.

ksconf attr-set macros.conf --stanza mydata_index --attribute definition --value 'index=mydata1 OR index=otheridx'

In this case the definition is a single line, but multi-line input is handled automatically.
It’s also possible to pull a vale from an existing file or from an environment variable, should that be useful.

Comparing files

Show the differences between two conf files using ksconf diff.

ksconf diff savedsearches.conf savedsearches-mine.conf

Sorting content

Create a normalized version of a configuration file, making conf files easier to merge with git.
Run an in-place sort like so:

ksconf sort --inplace savedsearches.conf

Tip

Use the ksconf-sort pre-commit hook to do this for you.

Extract specific stanza

Say you want to grep your conf file for a specific stanza pattern:

ksconf filter search/default/savedsearches.conf --stanza 'Errors in the last *'

Say you want to list stanzas containing cron_schedule:

ksconf filter Splunk_TA_aws/default/savedsearches.conf --brief \
 --attr-present 'cron_schedule'

Remove unwanted settings

Say you want to remove vsid from a legacy savedsearches file:

ksconf filter search/default/savedsearches.conf --reject-attrs "vsid"

To see just to the scheduled time and enablement status of scheduled searches, run:

ksconf filter Splunk_TA_aws/default/savedsearches.conf \
 --attr-present cron_schedule \
 --keep-attrs 'cron*' \
 --keep-attrs enableSched
 --keep-attrs disabled

List apps configured in the deployment server

ksconf filter -b serverclass.conf --stanza 'serverClass:*:app:*' | \
 cut -d: -f4 | sort | uniq

Find saved searches with earliest=-1d@d

ksconf filter apps/*/default/savedsearches.conf \
 --attr-eq dispatch.earliest_time "-1d@d"

Cleaning up

Reduce cruft in local

If you’re in the habit of copying the default files to local in the TAs you deploy, here is a quick way to ‘minimize’ your files.
This will reduce the local file by removing all the default settings you copied but didn’t change.
(The importance of this is outlined in Minimizing files.)

ksconf minimize Splunk_TA_nix/default/inputs.conf --target Splunk_TA_nix/local/inputs.conf

Pushing local changes to default

App developers can push changes from the local folder to the default folder:

ksconf promote --interactive myapp/local/props.conf myapp/default/props.conf

You will be prompted to pick which items you want to promote.
Alternatively, use the --batch option to promote everything in one step, without reviewing the changes first.

Packaging and building apps

Quick package and install

Use the --release-file option of the package command to write out the name of the final created tarball.
This helps when the final tarball name isn’t known in advance because it contains a version string, for example.
By simply placing the latest release in a static location, this allows commonly repeated operations,
like build+install to be chained together in a convenient way making iterations quite fast.

cd my-apps
ksconf package --release-file .release kintyre_app_speedtest &&
 "$SPLUNK_HOME/bin/splunk" install app "$(<.release)" -update 1

A build process for the same package, where the version is defined by the latest git tag, would look something like this:

ksconf package -f "dist/kintyre_app_speedtest-{{version}}.tar.gz" \
 --set-version="{{git_tag}}" \
 --set-build=$GITHUB_RUN_NUMBER \
 --release-file .release \
 kintyre_app_speedtest
echo "Go upload $(<.release) to Splunkbase"

Advanced usage

Migrating content between apps

Say you want to move a bunch of savedsearches from search into a more appropriate app.
First create a file that lists all the names of your searches (one per line) in corp_searches.txt.
Next, copy just the desired stanzas, to your new corp_app application using the following command:

ksconf filter --match string --stanza 'file://corp_searches.txt' \
 search/local/savedsearches.conf --output corp_app/default/savedsearches.conf

Because we want to move, not just copy, the searches, they can now be removed from the search app using the following steps:

ksconf filter --match string --stanza 'file://corp_searches.txt' \
 --invert-match search/local/savedsearches.conf \
 --output search/local/savedsearches.conf.NEW

Backup the original
mv search/local/savedsearches.conf \
 /my/backup/location/search-savedsearches-$(date +%Y%M%D).conf

Move the updated file in place
mv search/local/savedsearches.conf.NEW search/local/savedsearches.conf

Note

Setting the matching mode to string prevents any special characters that may be present in
your search names from being interpreted as wildcards.

Migrating the ‘users’ folder

Say you stood up a new Splunk server and the migration took longer than expected.
Now you have two users folders and don’t want to loose all the goodies stored in either one.
You’ve copied the users folder to user_old.
You’re working from the new server and would generally prefer to keep whatever is on the new server over what is on the old.
(This is because some of your users copied over some of their critical alerts manually while waiting for the migration to complete, and they’ve made updates they don’t want to lose.)

After stopping Splunk on the new server, run the following commands.

mv /some/share/users_old $SPLUNK_HOME/etc/users.old
mv $SPLUNK_HOME/etc/users $SPLUNK_HOME/etc/users.new

ksconf combine $SPLUNK_HOME/etc/users.old $SPLUNK_HOME/etc/users.new \
 --target $SPLUNK_HOME/etc/users --banner ''

Now double check the results and start Splunk.

Using --banner essentially disables the output banner feature.
Because, in this case, the combine operation is a one-time job and therefore no top-of-file warning is needed.

Maintaining apps stored in a local git repository

Extract and commit a new/updated app

ksconf unarchive --git-mode=commit my-package-112.tgz

For apps that use layers (default.d folder), then use a command like so:

ksconf unarchive --git-mode=commit \
 --default-dir=default.d/10-upstream \
 --keep 'default.d/*' my-package-112.tgz

If you’d like to disable git hooks, like pre-commit, when importing a new release of
an upsteam app, add --git-commit-args="--no-verify to the above commands.

Putting it all together

Pulling out a stanza defined in both default and local

Say you wanted to count the number of searches containing the word error

ksconf merge default/savedsearches.conf local/savedsearches.conf \
 | ksconf filter - --stanza '*Error*' --ignore-case --count

This is a simple example of chaining two basic ksconf commands together to perform a more complex operation.
The first command handles the merge of default and local savedsearches.conf into a single output stream.
The second command filters the resulting stream finding stanzas containing the word ‘Error’.

Building an all-in one TA for your indexing tier

Say you need to build a single TA containing all the index-time settings for your indexing tier.
(Note: Enterprise Security does something similar when generating the indexer app.)

ksconf merge etc/apps/*TA*/{default,local}/props.conf \
 | ksconf filter - --output=TA-for-indexers/default/props.conf \
 --include-attr 'TRANSFORMS*' \
 --include-attr 'TIME_*' \
 --include-attr 'MUST_BREAK*' \
 --include-attr 'SHOULD_LINEMERGE' \
 --include-attr 'EVENT_BREAKER*' \
 --include-attr 'LINE_BREAKER*'

This example is incomplete because it doesn’t list every index-time props.conf attribute, and leaves out transforms.conf and fields.conf, but hopefully you get the idea.

Plugins

Ksconf supports a growing number of plugins to enable custom workflow and and elegantly handle custom use cases that don’t make sense to implement in the core tool.
Plugins functionality is implemented using pluggy [https://pluggy.readthedocs.io/en/latest/].

Note that, much like the pluggy docs themselves, we use the term “hook” and “plugin” are used interchangeably at times.
Generally, the term “hook” is a specific handoff point where control can be passed from the ksconf codebase to some hook function that you’ve implemented to perform a specific operation.
The term “plugin” refers to a package (or collection) of implemented hooks.

There are multiple ways of enabling these hooks or collections, but the easiest way is by means of registration process built into Python’s packaging system.
This means that by simply installing a package, brand new functionality can be enabled within your ksconf command line.
Over time, we hope that more of these plugins can be published and made available to a wider audience on pypi.

Using plugins

Existing plugins can be found on pypi by search for the ksconf-* [https://pypi.org/search/?q=ksconf&o=&c=Environment+%3A%3A+Plugins] package prefix.
With a little bit of Python experience, it’s relatively simple to write your own.

Installation should be as simple as using your favorite package manager to install the plugin. For example:

pip install ksconf-<plugin-name>

Once installed, you can confirm which plugins are loaded and activated using --version.

ksconf --version

Output:

_ ___
	_ ___ ___ ___ ___	_				
'_	_ -	_	.		_	
,	___	___	___	_	_	_

ksconf 0.11.6.dev3+e508597.dirty
Python: 3.9.16 (/Users/username/venv/bin/python)
Git SHA1 e508597d committed on 2023-09-20
Installed at: /Users/username/sandbox/ksconf
Platform: Darwin Kernel Version 22.6.0: Wed Jul 5 22:22:05 PDT 2023; root:xnu-8796.141.3~6/RELEASE_ARM64_T6000
Git support: (/usr/bin/git) git version 2.39.2 (Apple Git-143)
Plugins:
 package ksconf-jinja-markdown (1.0.0) from /Users/lalleman/ksconf/plugins/jinja-markdown/ksconf_jinja_markdown.py
 hook modify_jinja_env via add_jinja_filters
...

Note that your installation will likely look different.

Troubleshooting

Review hook execution

Currently enabling hook monitoring is handled by KSCONF_DEBUG which also controls several other troubleshooting operations, such as enabling stack traces when exceptions occur.

Disable individual plugins

Plugins can be temporarily banned by using the KSCONF_PLUGIN_DISABLE environment variable.

Block for your entire session (or add to ~/.bashrc?)
export KSCONF_PLUGIN_DISABLE="jinja-markdown test-plugin2"

Quick interactive ban (for a quick test)
KSCONF_PLUGIN_DISABLE=jinja-markdown ksconf package ...

To permanently ban the plugin, simply remove the corresponding python package.

pip uninstall ksconf-jinja-markdown

List of plugins

All plugins are defined within KsconfHookSpecs.

Plugin examples

Modify Jinja Environment

The modify_jinja_env() hook allows for modification of the Jinja2 environment so that custom filters can be added.
This very specific hook allows a rendered Jinja2 layer file to use custom Jinja filter, so that in this case, markdown content can be rendered as HTML.

from ksconf.hook import ksconf_hook
from jinja2 import Environment

def markdown_to_html(md):
 """ Jinja filter for markdown to html """
 import commonmark
 return commonmark.commonmark(md)

@ksconf_hook(specname="modify_jinja_env")
def add_jinja_filters(env: Environment):
 """ Register new filter(s) to the Jinja environment, for use within templates. """
 env.filters["markdown2html"] = markdown_to_html

This specific example is bundled up as python package and is installable via:

pip install ksconf-jinja-markdown

Packaging a Plugin

Packing is fairy easy, and there are examples in the plugins folder in the ksconf GitHub repository.
This example assumes your packing a plugin that lives in a ksconf/plugins/fancy_plugin.py.
Note that the ksconf/plugins is a top-level directory that puts your new plugin in the ksconf.plugins namespace.
(This isn’t technically required, but it’s the recommended approach.)

Here’s an example of a setup.py file:

from setuptools import setup, find_namespace_packages

setup(name="ksconf-fancy-plugin",
 version="0.5.0",
 install_requires=[
 "ksconf>=0.13.0",
 "some-fancy-library", # Add 3rd party libraries here, if needed
],
 entry_points={"ksconf_plugin": ["fancy-plugin = ksconf.plugins.fancy_plugin"]},
 packages=find_namespace_packages(include=['ksconf.plugins.*']),
 py_modules=["ksconf_fancy_plugin"],
 description="Adds general fanciness within Ksconf",
 classifiers=["Environment :: Plugins"],
 author="Your name",
 author_email="your@name.example",
 url="Repo",
 zip_safe=False)

Then simply build and install your package.

pip install .

If you need to remove it, you can always run:

pip uninstall ksconf-fancy-plugin

All python package building and general development best practices apply, but this should be enough to get you started.

Contributing

Pull requests are greatly welcome! If you plan on contributing code back to the main ksconf
repo, please follow the standard GitHub fork and pull-request work-flow. We also ask that you enable
a set of git hooks to help safeguard against avoidable issues.

Pre-commit hook

The ksconf project uses the pre-commit [https://pre-commit.com/] hook to enable the following checks:

	Fixes trailing whitespace, EOF, and EOLs

	Confirms python code compiles (AST)

	Blocks the committing of large files and keys

	Rebuilds the dynamic portions of the docs related to the CLI.

	Confirms that all unit tests pass. (Currently, this is the same test run by Travis CI, but
since tests complete in under 5 seconds, the run-everywhere approach seems appropriate for now.
Eventually, the local testing will likely become a subset of the full test suite.)

Note

Multiple uses of pre-commit

Be aware, that the ksconf repo [https://github.com/Kintyre/ksconf] uses pre-commit for validation of it’s own content, and ksconf-pre-commit repo [https://github.com/Kintyre/ksconf-pre-commit] provides a pre-commit hook service definition for other repos.
The first scenario is discussed in this section of the guide.
The second scenario is for repositories that house Splunk apps to use ksconf check and ksconf sort
as easy to use hooks against their own .conf files which is discussed further in Pre-commit hooks.

Installing the pre-commit hook

To ensure your changes comply with the ksconf coding standards, please install and activate pre-commit [https://pre-commit.com/].

Install:

pip install pre-commit

Register the pre-commit hooks (one time setup)
cd ksconf
pre-commit install --install-hooks

Install gitlint

Gitlint [https://jorisroovers.com/gitlint/] will check to ensure that commit messages are in compliance with the standard subject,
empty-line, and body format. You can enable it with:

gitlint install-hook

Refresh module listing

After making changes to the module hierarchy or simply adding new commands, refresh the listing for
the autodoc extension by running the following command. Note that this may not remove old packages.

sphinx-apidoc --force -o "docs/source/api" ksconf 'ksconf/ext'

Create a new subcommand

Checklist:

	Create a new module in ksconf.commands.<CMD>.

	Create a new class derived from KsconfCmd.
You must, at a minimum, define the following methods:

	register_args() to setup any config parser inputs.

	run() which handles the actual execution of the command.

	Register a new entrypoint configuration in the setup_entrypoints.py script.
Edit the _entry_points dictionary to add an entry for the new command.

	Each entry must include command name, module, and implementation class.

	Create unit tests in test/test_cli_<CMD>.py.

	Create documentation in docs/source/cmd_<CMD>.rst.
You’ll want to build the docs locally to make sure everything looks correct.
Part of the documentation is automatically generated from the argparse arguments defined in the register_args() method,
but other bits need to be spelled out explicitly.

When in doubt, it may be helpful to look back over history in git for other recently added commands and use that as an example.

Here’s an overview of paths you should expect to update:

	File path

	Description / purpose

	
	

	ksconf/commands/fancy.py

	The core python code and CLI interface

	tests/tests/test_cli_CMD.py

	Add new unit test here

	docs/source/cmd_CMD.rst

	Command line documentation. Make sure to include the argparse module

	ksconf/setup_entrypoints.py

	Add a new entrypoint line here, or the new command won’t be registered

	.pre-commit-hooks.yaml

	If a new command is applicable, add this to the ksconf-pre-commit repo [https://github.com/Kintyre/ksconf-pre-commit].

	requirements.txt

	Update if there are any new external dependencies

	make_splunk_app

	If there’s new dependencies that need to go into the Splunk app

Cookiecutter options

The following example assume we’re make a new command called asciiart:

git clone https://github.com/Kintyre/ksconf.git
cd ksconf

Kick off a cookiecutter (promt submodule: asciiart)
cookiecutter https://github.com/Kintyre/ksconf.git -c cookiecutter-subcommand

cp ksconf-asciiart/* .

git add ksconf/commands/*.py docs/source/cmd_*.rst tests/test_cli*.py

Merge that one line into entrypoints
vim ksconf/setup_entrypoints*.py
git add kconf/setup_entrypoints.py

Now run pre-commit to ensure that the new command is found successfully and is importable

pre-commit
Now go write code, tests, docs and commit ...

Developer setup

The following steps highlight the developer install process.

Tools

If you are a developer, then we strongly suggest installing into a virtual environment to prevent
overwriting the production version of ksconf and for the installation of the developer tools. (The
virtual environment name venv is used below, but this can be whatever suites, just make sure
not to commit it.)

git clone https://github.com/Kintyre/ksconf.git
cd ksconf

Setup and activate virtual environment
python3 -m venv venv
. venv/bin/activate

Install developer packages
pip install -r requirements-dev.txt

Install the ksconf package in '--editable' mode
pip install -e .

Install ksconf

git clone https://github.com/Kintyre/ksconf.git
cd ksconf
pip install .

Building the docs

cd ksconf
. venv/bin/activate

cd docs
make html
open build/html/index.html

If you are actively editing the docs, and would like changes to be updated in your browser as you save changes .rst files, then use the script in the root directory:

./make_docs

If you’d like to build PDF, then you’ll need some extra tools. On Mac, you may also want to install
the following (for building docs, etc.):

brew install homebrew/cask/mactex-no-gui

Running TOX

Local testing across multiple versions of python can be accomplished with tox [https://tox.wiki/en/latest/] and pyenv [https://github.com/pyenv/pyenv].
See the online docs for theses tools for more details.

Tox and pyenv can be run like so:

Install the necessary python versions
pyenv install 3.7.9
...
pyenv install 3.10.1

Set specific default version of python for each major/minor release (tab completion is your friend here)
pyenv local 3.7.9 ... 3.10.1

Run tox for ALL python versions
tox

Run tox for just a specific python version
tox -e py38

Some additional information about how to setup and run these tests can be gleaned from the Vagrantfile and Dockerfile
in the root of the git repository, though specific python versions contained there may be quite out of date.

Git tips & tricks

These tips & tricks are based on prior Splunk, git, and ksconf experience.
None of this content is an endorsement of a particular approach or tool.
Read the docs, and take responsibility. As always, your millage may vary.

Pre-commit hooks

Ksconf is setup to work as a pre-commit [https://pre-commit.com/] plugin.
To use ksconf in this manner, simply configure the ksconf repo in your pre-commit configuration file.
If you haven’t done any of this before, it’s not difficult to setup but is beyond the scope of this guide.
We suggest that you read the pre-commit docs and review this section when you are ready to setup the hooks.

Hooks provided by ksconf

Three hooks are currently defined by the ksconf-pre-commit repo:

	ksconf-check
	Runs ksconf check to perform basic validation tests against all files
in your repo that end with .conf or .meta.
Any errors will be reported by the UI at commit time and
you’ll be able to correct mistakes before bogus files are committed into your repo.
If you’re not sure why you’d need this, check out Why validate my conf files?

	ksconf-sort
	Runs ksconf sort to normalize any of your .conf or .meta files
which will make diffs more readable and merging more predictable.
As with any hook, you can customize the filename pattern of which files this applies to.
For example, to manually organize props.conf files, simply add the exclude setting.
See Example below.

	ksconf-xml-format:
	Runs ksconf xml-format to apply consistency to your XML representations of Simple XML dashboards and navigation files.
Dashboard Studio views can also be formatted too, along with the nested JSON payload.
Formatting includes appropriate indention and the automatic addition of <![CDATA[...]]> blocks, as needed,
to reduce the need for XML escaping, resulting in more readable source file.
By default, this hook looks at standard locations where XML views and navigation typically live.

Repository Change

As of October 2023 (v0.12), the ksconf pre-commit hooks have been moved into their own repository to simplify packing and dependency complexities.
This will impact users whenever upgrading their pre-commit configs to use the latest version of ksconf.
This will happen, for example, when running pre-commit autoupdate.

To be clear, this change will not break any existing pre-commit configuration.
But to avoid any disruption, we suggest you start using this new repository now, while you’re thinking about it.
The change is easy.

Migration Steps

Edit your .pre-commit-config.yaml file to (1) use the new repo location, and (2) use a recent version in rev (v0.11.7+)

Replace this:

- repo: https://github.com/Kintyre/ksconf
 rev: v0.9.5

with this:

- repo: https://github.com/Kintyre/ksconf-pre-commit
 rev: v0.11.9

Alternately, you could run the following shell commands:

Update pre-commit config in-place
sed -e 's~https://github.com/Kintyre/ksconf$~https://github.com/Kintyre/ksconf-pre-commit~' -i.bak .pre-commit-config.yaml

Update to latest release
pre-commit autoupdate --repo https://github.com/Kintyre/ksconf-pre-commit

Configuring pre-commit hooks in you repo

To add ksconf pre-commit hooks to your repository, add the following content to your
.pre-commit-config.yaml file:

repos:
- repo: https://github.com/Kintyre/ksconf-pre-commit
 rev: v0.11.9
 hooks:
 - id: ksconf-check
 - id: ksconf-sort
 - id: ksconf-xml-format

For general reference, here’s a copy of what we frequently use for our repos.

- repo: https://github.com/pre-commit/pre-commit-hooks
 rev: v2.0.0
 hooks:
 - id: trailing-whitespace
 exclude: README.md
 - id: end-of-file-fixer
 exclude: README.md$
 - id: check-json
 - id: check-xml
 - id: check-ast
 - id: check-added-large-files
 args: ['--maxkb=50']
 - id: check-merge-conflict
 - id: detect-private-key
 - id: mixed-line-ending
 args: ['--fix=lf']
- repo: https://github.com/Kintyre/ksconf-pre-commit
 rev: v0.11.9
 hooks:
 - id: ksconf-check
 - id: ksconf-sort
 exclude: (props|logging)\.conf
 - id: ksconf-xml-format

Tip

You should update rev to the most currently released stable version.
Upgrading this frequently isn’t typically necessary since these two operations are pretty basic and stable.
However, it’s still a good idea to review the change log to see what, if any, pre-commit functionality was updated.

Note

Sometimes pre-commit can get in the way.

Instead of disabling it entirely, it’s often better to disable the specific rule that’s causing an issue
using the SKIP environmental variable.
So for example, if intentionally adding a file over 50 Kb, a command like this will allow all the other rules to still run.

SKIP=check-added-large-file git commit -m "Refresh lookup files for bogus TA"

This and other tricks are fully documented in the pre-commit [https://pre-commit.com/] docs.
However, this comes up frequently enough that it’s worth repeating here.

Should my version of ksconf and pre-commit plugins be the same?

If you’re running both ksconf locally as well as the ksconf pre-commit plugin, then technically you have ksconf installed twice.
That may sound less than ideal, but practically, this isn’t a problem.
As long as the version of the ksconf CLI tool is close to the rev listed in .pre-commit-config.yaml, then everything should work fine.

Our suggestion:

	Keep versions in the same major.minor release range or bump the version every 6-12 months.

	Check the changelog for any pre-commit related changes or compatibility concerns.

While keeping ksconf CLI versions in sync across your environment is recommended, it doesn’t matter as much for the pre-commit plugin. Why?

	The pre-commit plugin offers a small subset of overall ksconf functionality.

	The exposed functionality is stable and changes infrequently.

	Updating pre-commit too frequently may cause unnecessary delays if you have a large team or high number of git clones throughout your environment, as each one will have to wait and upgrade the next time pre-commit is kicked off.

Git configuration tweaks

Ksconf as external difftool

Use ksconf diff as an external difftool provider for git.
Edit ~/.gitconfig and add the following entries:

[difftool "ksconf"]
 cmd = "ksconf --force-color diff \"$LOCAL\" \"$REMOTE\" | less -R"
[difftool]
 prompt = false
[alias]
 ksdiff = "difftool --tool=ksconf"

Now you can run this new git alias to compare files in your directory using the ksconf diff
feature instead of the default textual diff that git provides.
This is especially helpful if the ksconf-sort pre-commit hook hasn’t been enabled.

git ksdiff props.conf

Tip

Wonky version of git?

If you find yourself in the situation where git-difftool hasn’t been fully installed correctly (or the Perl extensions are missing), then here’s a workaround option for you.

ksconf diff <(git show HEAD:./props.conf) props.conf

Take note of the relative path prefix ./.
In practice, this can be problematic.

Stanza aware textual diffs

Make git diff show the ‘stanza’ on the @@ output lines.

Note

How does git know that?

Ever wonder how git diff is able to show you the name of the function or method where changes
were made? This works for many programming languages out of the box. If you’ve ever spent much
time looking at diffs, that additional context is invaluable. As it turns out, this is
customizable by adding a stanza matching regular expression with a file pattern match.

Simply add the following settings to your git configuration:

[diff "conf"]
 xfuncname = "^(\\[.*\\])$"

Then register this new ability with specific file patterns using git’s attributes feature.
Edit ~/.config/git/attributes and add:

*.conf diff=conf
*.meta diff=conf

Note

Didn’t work as expected?

Be aware that the location for your global-level attributes may be different.
Use the following command to test if the settings have been applied.

git check-attr -a -- *.conf

Test to make sure the xfuncname attribute was set as expected:

git config diff.conf.xfuncname

Git tricks

Avoid replicating the .git folder

Version controlling certain directories, like master-apps or shcluster can result in the entire .git folder being replicated to other Splunk instances.
This can be problematic because (1) this folder can be quite large, and (2) it can cause confusion on the receiving side leaving an admin to believe that the destination folder is version controlled.
Splunk doesn’t provide a way to block the .git folder from being replicated.

Generally, there may be other more appropriate way to control content of these folders, but when faced with this situation, a simple workaround is to move the real .git folder to a secondary location (outside of the replicated folder) and instead us a .git file with a gitdir: pointer to the real git folder.
This is may sound complicated, but it’s quite easy in practice.
Here’s an example with a master-apps folder:

cd $SPLUNK_HOME/etc/master-apps
mv -v "${PWD}/.git" "${PWD}.git"
echo "gitdir: ${PWD}.git" > "$PWD/.git"

After running the above commands, the .git folder is now named master-apps.git, and master-apps/.git is now just a small file referencing the new location of the git repository folder. Splunk deployment/synchronization operations now just copy a small file, rather than the .git folder.

More information is available at gitrepository-layout [https://git-scm.com/docs/gitrepository-layout#_description].

Random

Typographic and Convention

Pronounced: k·s·kȯnf

Capitalization:

	Form

	Acceptability factor

	ksconf

	Always lower for CLI.
Generally preferred.

	KSCONF

	Okay for titles.

	Ksconf

	Title case is okay too.

	KSConf

	You’ll see this, but weird.

	KSconf

	Just proper nouns capitalized

	KsConf

	No, except maybe in a class name?

	KsconF

	Thought about it. No go!
Reserved for ASCII art ONLY

I wrote this while laughing at my own lack of consistency.

– Lowell

How Splunk writes to conf files

Splunk does some counter intuitive thing when it writes to local conf files.

For example,

	All conf file updates are automatically minimized.
Splunk never has to write the entire contents because updates only happen to “local” files.

	Modified stanzas are sometimes rewritten in place,
and other times removed from the current position and moved to the bottom of the .conf file.
This behavior appears to vary based on what REST endpoint is used to initiate the update.

	New stanzas are written with attributes sorted lexicographically.
When a stanza is updated in place, the modified attributes may be updated in place and
new entires are typically added at the bottom of the stanza.

	Sometimes boolean values persist in unexpected ways.
Primarily this is because there’s more than one way to represent them textually,
and that textual representation is different than what’s stored in default.
Often, literal values are passed through a conf REST POST so they make it to disk,
but when read, are translated into booleans.

Essentially, Splunk will always “minimize” the conf file at each update. This is because
Splunk internally keeps track of the final representation of the entire stanza (in memory), and only
when it’s written to disk does Splunk care about the current contents of the local file. In
fact, Splunk re-reads the conf file immediately before updating it. This is why, if you’ve made a
local changes and forgot to reload, Splunk will typically not lose your changes. (Unless you’ve
updated the same attribute both places… I mean, it’s not magic.)

Tip

Don’t believe me? Try it yourself.

To prove that it works this way, simply find a saved search that you modified from any app that
you installed. Look at the local conf file and observe your changes. Now, go edit the saved
search and restore some attribute to it’s original value; the most obvious one here would be the
search attribute, but that’s tricky if it’s multiple lines. Now, go look at the local conf
file again. If you’ve updated it with exactly the same value, then that attribute will have been
completely removed from the local file. This is in fact a neat trick that can be used to revert
local changes to allow future updates to “pass-though” unimpeded. In SHC scenarios, this may
be your only option to remove local settings.

Okay, so what’s the value in having a minimize command if Splunk does
this automatically every time it’s makes a change? Well, simply put, because Splunk can’t write to
all local file locations. Splunk only writes to the local folders of system, etc/users, and etc/apps (and
sometimes to deployment-apps app.conf local file, but that’s a different topic).

Also, there are times where boolean values will show up in an unexpected manor because of how
Splunk treats them internally. It isn’t certain if this is a silly mistake in the default .conf
files or a clever workaround to what’s essentially a design flaw in the conf system. Either
way, we suspect the user benefits. Because Splunk accepts more values as boolean than what it will
write out, certain boolean values will always be explicitly stored in the conf files.
This means that disabled and several other settings in savedsearches.conf always get
explicitly written. How is that helpful? Well, imagine what would happen if you accidentally
changed disabled = 1 in the global stanzas in savedsearches.conf. Well, nothing if all
savedsearches have that values explicitly written. The point is this: there are times when
repeating yourself isn’t a bad thing. (Incidentally, this is the reason for the --preserve-key
flag on the minimize command.)

Grandfather Paradox

The KSCONF Splunk app disadvantageously breaks it’s designed paradigm. Ksconf was designed to be
the program that manages all your other apps, so by deploying ksconf as an app itself, we open up the
possibility that ksconf could upgrade, deploy, or manage itself. Basically, it could cut off the limb
that it’s standing on. Practically, this can get messy, especially if
you’re on Windows, where file locking is also likely to cause issues.

So sure, if you want to be picky, “Grandfather paradox” is probably the wrong analogy.
Pull requests are welcome.

Contact

If you have questions, concerns, ideas about the product or how to make it better, please let us know!

Here are some ways to get in contact with us and other KSCONF users:

	Chat about #ksconf on Splunk’s Slack [https://splunk-usergroups.slack.com] channel.

	Discuss features or ask general questions in GitHub discussions [https://github.com/Kintyre/ksconf/discussions]. This is new, please drop by and let us know if this is helpful or not.

	Email us at hello@kintyre.co for general inquiries, if you’re interested in commercial support, or would like to fund new features.

	Ask a question on

	GitHub [https://github.com/Kintyre/ksconf/issues/new?labels=question]

Command line reference

KSCONF supports the following CLI options:

ksconf

usage: ksconf [-h] [--version] [--force-color] [--disable-color]
 {attr-get,attr-set,check,combine,diff,filter,merge,minimize,package,promote,rest-export,rest-publish,snapshot,sort,unarchive,xml-format}
 ...

KSCONF: Ksconf Splunk CONFig tool

This utility handles a number of common Splunk app maintenance tasks in a small
and easy to deploy package. Specifically, this tool deals with many of the
nuances with storing Splunk apps in git and pointing live Splunk apps to a git
repository. Merging changes from the live system's (local) folder to the
version controlled (default) folder and dealing with more than one layer of
"default" are all supported tasks which are not native to Splunk.

positional arguments:
 {attr-get,attr-set,check,combine,diff,filter,merge,minimize,package,promote,rest-export,rest-publish,snapshot,sort,unarchive,xml-format}
 attr-get Get the value from a specific stanzas and attribute
 attr-set Set the value of a specific stanzas and attribute
 check Perform basic syntax and sanity checks on .conf files
 combine Combine configuration files across multiple source
 directories into a single destination directory. This
 allows for an arbitrary number of Splunk configuration
 layers to coexist within a single app. Useful in both
 ongoing merge and one-time ad-hoc use.
 diff Compare settings differences between two .conf files
 ignoring spacing and sort order
 filter A stanza-aware GREP tool for conf files
 merge Merge two or more .conf files
 minimize Minimize the target file by removing entries
 duplicated in the default conf(s)
 package Create a Splunk app .spl file from a source directory
 promote Promote .conf settings between layers using either
 batch or interactive mode. Frequently this is used to
 promote conf changes made via the UI (stored in the
 'local' folder) to a version-controlled directory,
 such as 'default'.
 rest-export Export .conf settings as a curl script to apply to a
 Splunk instance later (via REST)
 rest-publish Publish .conf settings to a live Splunk instance via
 REST
 snapshot Snapshot .conf file directories into a JSON dump
 format
 sort Sort a Splunk .conf file creating a normalized format
 appropriate for version control
 unarchive Install or upgrade an existing app in a git-friendly
 and safe way
 xml-format Normalize XML view and nav files

options:
 -h, --help show this help message and exit
 --version show program's version number and exit
 --force-color Force TTY color mode on. Useful if piping the output a
 color-aware pager, like 'less -R'
 --disable-color Disable TTY color mode. This can also be setup as
 environmental variable: 'export KSCONF_TTY_COLOR=off'

ksconf attr-get

usage: ksconf attr-get [-h] --stanza STANZA --attribute ATTR [--missing-okay]
 [-o OUTPUT]
 conf [conf ...]

Get a specific stanza and attribute value from a Splunk .conf file.

positional arguments:
 conf Input file or standard input.

options:
 -h, --help show this help message and exit
 --stanza STANZA, -s STANZA
 Name of the stanza within CONF to retrieve.
 --attribute ATTR, --attr ATTR, -a ATTR
 Name of attribute within STANZA to retrieve.
 --missing-okay Ignore missing stanzas and attributes.
 -o OUTPUT, --output OUTPUT
 File where the filtered results are written. Defaults
 to standard out.

ksconf attr-set

usage: ksconf attr-set [-h] --stanza STANZA --attribute ATTR
 [--value-type TYPE] [--create-missing] [--no-overwrite]
 conf value

Set a specific stanza and attribute value of a Splunk .conf file.
The value can be provided as a command line argument, file, or
environment variable

This command does not support preserving leading or trailing whitespace.
Normally this is desireable.

positional arguments:
 conf Configuration file to update.
 value Value to apply to the conf file. Note that this can be
 a raw text string, or the name of the file, or an
 environment variable

options:
 -h, --help show this help message and exit
 --stanza STANZA, -s STANZA
 Name of the stanza within CONF to set.
 --attribute ATTR, --attr ATTR, -a ATTR
 Name of the attribute within STANZA to set.
 --value-type TYPE, -t TYPE
 Select the type of VALUE. The default is a string.
 Alternatively, the real value can be provided within a
 file, or an environment variable.
 --create-missing Create a new conf file if it doesn't currently exist.
 --no-overwrite Only set VALUE if none currently exists. This can be
 used to safely set a one-time default, but don't
 update overwrite an existing value.

ksconf check

usage: ksconf check [-h] [--quiet] FILE [FILE ...]

Provides basic syntax and sanity checking for Splunk's .conf files. Use
Splunk's built-in 'btool check' for a more robust validation of attributes and
values. Consider using this utility as part of a pre-commit hook.

positional arguments:
 FILE One or more configuration files to check. If '-' is given, then
 read a list of files to validate from standard input

options:
 -h, --help show this help message and exit
 --quiet, -q Reduce the volume of output.

ksconf combine

usage: ksconf combine [-h] --target TARGET [-m {auto,dir.d,disable}] [-q]
 [-I PATTERN] [-E PATTERN] [--enable-handler {jinja}]
 [--template-vars TEMPLATE_VARS] [--dry-run]
 [--follow-symlink] [--banner BANNER] [-K KEEP_EXISTING]
 [--disable-marker] [--disable-cleanup]
 source [source ...]

Merge .conf settings from multiple source directories into a combined target
directory. Configuration files can be stored in a '/etc/*.d' like directory
structure and consolidated back into a single 'default' directory.

This command supports both one-time operations and recurring merge jobs. For
example, this command can be used to combine all users' knowledge objects (stored
in 'etc/users') after a server migration, or to merge a single user's settings
after their account has been renamed. Recurring operations assume some type
of external scheduler is being used. A best-effort is made to only write to
target files as needed.

The 'combine' command takes your logical layers of configs (upstream, corporate,
Splunk admin fixes, and power user knowledge objects, ...) expressed as
individual folders and merges them all back into the single 'default' folder
that Splunk reads from. One way to keep the 'default' folder up-to-date is
using client-side git hooks.

No directory layout is mandatory, but taking advantages of the native-support
for 'dir.d' layout works well for many uses cases. This idea is borrowed from
the Unix System V concept where many services natively read their config files
from '/etc/*.d' directories.

Version notes: dir.d was added in ksconf 0.8. Starting in 1.0 the default will
switch to 'dir.d', so if you need the old behavior be sure to update your scripts.

positional arguments:
 source The source directory where configuration files will be
 merged from. When multiple source directories are
 provided, start with the most general and end with the
 specific; later sources will override values from the
 earlier ones. Supports wildcards so a typical Unix
 'conf.d/##-NAME' directory structure works well.

options:
 -h, --help show this help message and exit
 --target TARGET, -t TARGET
 Directory where the merged files will be stored.
 Typically either 'default' or 'local'
 -m {auto,dir.d,disable}, --layer-method {auto,dir.d,disable}
 Set the layer type used by SOURCE. Use 'dir.d' if you
 have directories like 'MyApp/default.d/##-layer-name',
 or use 'disable' to manage layers explicitly and avoid
 any accidental layer detection. By default, 'auto'
 mode will enable transparent switching between 'dir.d'
 and 'disable' (legacy) behavior, however this option
 will be removed in a future release.
 -q, --quiet Make output a bit less noisy. This may change in the
 future...
 -I PATTERN, --include PATTERN
 Name or pattern of layers to include.
 -E PATTERN, --exclude PATTERN
 Name or pattern of layers to exclude from the target.
 --enable-handler {jinja}
 Enable optional file handling support
 --template-vars TEMPLATE_VARS
 Set template variables as key=value or YAML/JSON, if
 filename prepend with @
 --dry-run, -D Enable dry-run mode. Instead of writing to TARGET,
 preview changes as a 'diff'. If TARGET doesn't exist,
 then show the merged file.
 --follow-symlink, -l Follow symbolic links pointing to directories.
 Symlinks to files are always followed.
 --banner BANNER, -b BANNER
 A banner or warning comment added to the top of the
 TARGET file. Used to discourage Splunk admins from
 editing an auto-generated file.
 -K KEEP_EXISTING, --keep-existing KEEP_EXISTING
 Existing file(s) to preserve in the TARGET folder.
 This argument may be used multiple times.
 --disable-marker Prevents the creation of or checking for the
 '.ksconf_controlled' marker file safety check. This
 file is typically used indicate that the destination
 folder is managed by ksconf. This option should be
 reserved for well-controlled batch processing
 scenarios.
 --disable-cleanup Disable all file removal operations. Skip the cleanup
 phase that typically removes files in TARGET that no
 longer exist in SOURCE

ksconf diff

usage: ksconf diff [-h] [-o FILE] [--detail {global,stanza,key}] [--comments]
 [--format {diff,json}]
 CONF1 CONF2

Compares the content differences of two .conf files

This command ignores textual differences (like order, spacing, and comments) and
focuses strictly on comparing stanzas, keys, and values. Note that spaces within
any given value, will be compared. Multi-line fields are compared in a more traditional
'diff' output so that long saved searches and macros can be compared more easily.

positional arguments:
 CONF1 Left side of the comparison
 CONF2 Right side of the comparison

options:
 -h, --help show this help message and exit
 -o FILE, --output FILE
 File where difference is stored. Defaults to standard
 out.
 --detail {global,stanza,key}, -d {global,stanza,key}
 Control the highest level for which 'replace' events
 may occur.
 --comments, -C Enable comparison of comments. (Unlikely to work
 consistently)
 --format {diff,json}, -f {diff,json}
 Output file format to produce. 'diff' the the classic
 format used by default. 'json' is helpful when trying
 to review changes programmatically.

ksconf filter

usage: ksconf filter [-h] [-o FILE] [--comments] [--verbose] [--skip-broken]
 [--match {regex,wildcard,string}] [--ignore-case]
 [--invert-match] [--files-with-matches]
 [--count | --brief] [--stanza PATTERN]
 [--attr-present ATTR] [--attr-matches ATTR PATTERN]
 [--attr-not-matches ATTR PATTERN] [-e | -d]
 [--keep-attrs WC-ATTR] [--reject-attrs WC-ATTR]
 CONF [CONF ...]

Filter the contents of a conf file in various ways. Stanzas can be included or
excluded based on a provided filter or based on the presence or value of a
key. Where possible, this command supports GREP-like arguments to bring a
familiar feel.

positional arguments:
 CONF Input conf file

options:
 -h, --help show this help message and exit
 -o FILE, --output FILE
 File where the filtered results are written. Defaults
 to standard out.
 --comments, -C Preserve comments. Comments are discarded by default.
 --verbose Enable additional output.
 --skip-broken Skip broken input files. Without this things like
 duplicate stanzas and invalid entries will cause
 processing to stop.
 --match {regex,wildcard,string}, -m {regex,wildcard,string}
 Specify pattern matching mode. Defaults to 'wildcard'
 allowing for '*' and '?' matching. Use 'regex' for
 more power but watch out for shell escaping. Use
 'string' to enable literal matching.
 --ignore-case, -i Ignore case when comparing or matching strings. By
 default matches are case-sensitive.
 --invert-match, -v Invert match results. This can be used to show what
 content does NOT match, or make a backup copy of
 excluded content.

Output mode:
 Select an alternate output mode. If any of the following options are used,
 the stanza output is not shown.

 --files-with-matches, -l
 List files that match the given search criteria
 --count, -c Count matching stanzas
 --brief, -b List name of matching stanzas

Stanza selection:
 Include or exclude entire stanzas using these filter options. All filter
 options can be provided multiple times. If you have a long list of
 filters, they can be saved in a file and referenced using the special
 'file://' prefix. One entry per line. Entries can be either a literal
 strings, wildcards, or regexes, depending on MATCH.

 --stanza PATTERN Match any stanza who's name matches the given pattern.
 PATTERN supports bulk patterns via the 'file://'
 prefix.
 --attr-present ATTR Match any stanza that includes the ATTR attribute.
 ATTR supports bulk attribute patterns via the
 'file://' prefix.
 --attr-matches ATTR PATTERN, --attr-eq ATTR PATTERN
 Match any stanza containing ATTR == PATTERN. PATTERN
 supports the special 'file://filename' syntax.
 Matching can be a direct string comparison (equals),
 or a regex and wildcard match. Note that all '--attr-
 match' and '--attr-not-match' arguments are matched
 together. For a stanza to match, all rules must apply.
 If attr is missing from a stanza, the value becomes an
 empty string for matching purposes.
 --attr-not-matches ATTR PATTERN, --attr-ne ATTR PATTERN
 Match any stanza containing ATTR != PATTERN. See '--
 attr-matches' for additional details.
 -e, --enabled-only Keep only enabled stanzas. Any stanza containing
 'disabled = 1' will be removed. The value of
 'disabled' is assumed to be false by default.
 -d, --disabled-only Keep disabled stanzas only. The value of the
 `disabled` attribute is interpreted as a boolean.

Attribute selection:
 Include or exclude attributes passed through. By default, all attributes
 are preserved. Allowlist (keep) operations are preformed before blocklist
 (reject) operations.

 --keep-attrs WC-ATTR Select which attribute(s) will be preserved. This
 space separated list of attributes indicates what to
 preserve. Supports wildcards.
 --reject-attrs WC-ATTR
 Select which attribute(s) will be discarded. This
 space separated list of attributes indicates what to
 discard. Supports wildcards.

ksconf merge

usage: ksconf merge [-h] [--target TARGET] [--ignore-missing] [--in-place]
 [--dry-run] [--banner BANNER]
 conf [conf ...]

Merge two or more .conf files into a single combined .conf file. This is
similar to the way that Splunk logically combines the 'default' and 'local'
folders at runtime.

positional arguments:
 conf The source configuration file(s) to collect settings
 from.

options:
 -h, --help show this help message and exit
 --target TARGET, -t TARGET
 Destination file for merged configurations. If not
 provided, the merged conf is written to standard
 output.
 --ignore-missing, -s Silently ignore any missing CONF files.
 --in-place, -i Enable in-place update mode. When selected, the TARGET
 file will also be considered as the base of the merge
 operation. All CONF files will be merged with TARGET.
 When disabled, any existing content within TARGET is
 ignored and overwritten.
 --dry-run, -D Enable dry-run mode. Instead of writing to TARGET,
 preview changes in 'diff' format. If TARGET doesn't
 exist, then show the merged file.
 --banner BANNER, -b BANNER
 A banner or warning comment added to the top of the
 TARGET file. Used to discourage Splunk admins from
 editing an auto-generated file.

ksconf minimize

usage: ksconf minimize [-h] [--target TARGET] [--dry-run | --output OUTPUT]
 [--explode-default] [-k PRESERVE_KEY]
 CONF [CONF ...]

Minimize a conf file by removing any duplicated default settings. Reduce a
local conf file to only your intended changes without manually tracking which
entries you've edited. Minimizing local conf files makes your local
customizations easier to read and often results in cleaner upgrades.

positional arguments:
 CONF The default configuration file(s) used to determine
 what base settings are. The base settings determine
 what is unnecessary to repeat in target file.

options:
 -h, --help show this help message and exit
 --target TARGET, -t TARGET
 The local file that you wish to remove duplicate
 settings from. This file will be read from and then
 replaced with a minimized version.
 --dry-run, -D Enable dry-run mode. Instead of writing and minimizing
 the TARGET file, preview what would be removed as a
 'diff'.
 --output OUTPUT Write the minimized output to a separate file instead
 of updating TARGET.
 --explode-default, -E
 Enable minimization across stanzas for special use-
 cases. Helpful when dealing with stanzas downloaded
 from a REST endpoint or 'btool list' output.
 -k PRESERVE_KEY, --preserve-key PRESERVE_KEY
 Specify attributes that should always be kept.

ksconf package

usage: ksconf package [-h] [-f SPL] [--app-name APP_NAME]
 [--blocklist BLOCKLIST] [--allowlist ALLOWLIST]
 [--layer-method {dir.d,disable}] [-I PATTERN]
 [-E PATTERN] [--enable-handler {jinja}]
 [--template-vars TEMPLATE_VARS] [--follow-symlink]
 [--set-version VERSION] [--set-build BUILD]
 [--allow-local | --block-local | --merge-local]
 [--release-file RELEASE_FILE]
 SOURCE

Create a Splunk app or add on tarball ('.spl') file from an app directory.
'ksconf package' can do useful things like, exclude unwanted files, combine
layers, set the application version and build number, drop or promote the
'local' directory into 'default'. Note that some arguments, like the 'FILE'
support special values that can be automatically evaluated at runtime. For
example the placeholders '{{version}}' or '{{git_tag}}' can be expanded into
the output tarball filename. If both layering and templating are in use at the
same time, be aware that templates are rendered prior to layering operations.
This allows, for example, one layer to include a simple 'indexes.conf' file
and another layer to include an 'indexes.conf.j2' template.

positional arguments:
 SOURCE Source directory for the Splunk app.

options:
 -h, --help show this help message and exit
 -f SPL, --file SPL Name of splunk app file (tarball) to create.
 Placeholder variables in '{{var}}' syntax can be used
 here.
 --app-name APP_NAME Specify the top-level app folder name. If this is not
 given, the app folder name is automatically extracted
 from the basename of SOURCE. Placeholder variables,
 such as '{{app_id}}' can be used here.
 --blocklist BLOCKLIST, -b BLOCKLIST
 Pattern for files/directories to exclude. Can be given
 multiple times. You can load multiple exclusions from
 disk by using 'file://path' which can be used with
 '.gitignore' for example. (Default includes: '.git*',
 '*.py[co]', '__pycache__', '.DS_Store')
 --allowlist ALLOWLIST, -a ALLOWLIST
 Remove a pattern that was previously added to the
 blocklist.
 --enable-handler {jinja}
 Enable optional file handling support
 --template-vars TEMPLATE_VARS
 Set template variables as key=value or YAML/JSON, if
 filename prepend with @
 --follow-symlink, -l Follow symbolic links pointing to directories.
 Symlinks to files are always followed.
 --set-version VERSION
 Set application version. By default the application
 version is read from default/app.conf. Placeholder
 variables such as '{{git_tag}}' can be used here.
 --set-build BUILD Set application build number.
 --allow-local Allow the 'local' folder to be kept as-is WARNING:
 This goes against Splunk packaging practices, and will
 cause AppInspect to fail. However, this option can be
 useful for private package transfers between servers,
 app backups, or other admin-like tasks.
 --block-local Block the 'local' folder and 'local.meta' from the
 package.
 --merge-local Merge any files in 'local' into the 'default' folder
 during packaging. This is the default behavior.

Layer filtering:
 If the app being packaged includes multiple layers, these arguments can be
 used to control which ones should be included in the final app file. If no
 layer options are specified, then all layers will be included.

 --layer-method {dir.d,disable}
 Set the layer type used by SOURCE. Additional
 description provided in in the 'combine' command.
 -I PATTERN, --include PATTERN
 Name or pattern of layers to include.
 -E PATTERN, --exclude PATTERN
 Name or pattern of layers to exclude from the target.

Advanced Build Options:
 The following options are for more advanced app building workflows.

 --release-file RELEASE_FILE
 Write the path of the newly generated archive file
 (SPL) after the archive is written. This is useful in
 build scripts when the SPL contains variables so the
 final name may not be known ahead of time.

ksconf promote

usage: ksconf promote [-h] [--batch | --interactive | --summary | --diff]
 [--verbose] [--match {regex,wildcard,string}]
 [--ignore-case] [--invert-match] [--stanza PATTERN]
 [--force] [--keep] [--keep-empty]
 SOURCE TARGET

Propagate .conf settings applied in one file to another. Typically this is used
to move 'local' changes (made via the UI) into another layer, such as the
'default' or a named 'default.d/50-xxxxx') folder.

Promote has two modes: batch and interactive. In batch mode, all changes are
applied automatically and the (now empty) source file is removed. In interactive
mode, the user is prompted to select stanzas to promote. This way local changes
can be held without being promoted.

NOTE: Changes are *MOVED* not copied, unless '--keep' is used.

positional arguments:
 SOURCE The source configuration file to pull changes from.
 (Typically the 'local' conf file)
 TARGET Configuration file or directory to push the changes
 into. (Typically the 'default' folder)

options:
 -h, --help show this help message and exit
 --batch, -b Use batch mode where all configuration settings are
 automatically promoted. All changes are removed from
 source and applied to target. The source file will be
 removed unless '--keep-empty' is used.
 --interactive, -i Enable interactive mode where the user will be
 prompted to approve the promotion of specific stanzas
 and attributes. The user will be able to apply, skip,
 or edit the changes being promoted.
 --summary, -s Summarize content that could be promoted.
 --diff, -d Show the diff of what would be promoted.
 --verbose Enable additional output.
 --force, -f Disable safety checks. Don't check to see if SOURCE
 and TARGET share the same basename.
 --keep, -k Keep conf settings in the source file. All changes
 will be copied into the TARGET file instead of being
 moved there. This is typically a bad idea since local
 always overrides default.
 --keep-empty Keep the source file, even if after the settings
 promotions the file has no content. By default, SOURCE
 will be removed after all content has been moved into
 TARGET. Splunk will re-create any necessary local
 files on the fly.

Automatic filtering options:
 Include or exclude stanzas to promote using these filter options.
 Stanzas selected by these filters will be promoted.

 All filter options can be provided multiple times.
 If you have a long list of filters, they can be saved in a file and
 referenced using the special 'file://' prefix. One entry per line.

 --match {regex,wildcard,string}, -m {regex,wildcard,string}
 Specify pattern matching mode. Defaults to 'wildcard'
 allowing for '*' and '?' matching. Use 'regex' for
 more power but watch out for shell escaping. Use
 'string' to enable literal matching.
 --ignore-case Ignore case when comparing or matching strings. By
 default matches are case-sensitive.
 --invert-match, -v Invert match results. This can be used to prevent
 content from being promoted.
 --stanza PATTERN Promote any stanza with a name matching the given
 pattern. PATTERN supports bulk patterns via the
 'file://' prefix.

ksconf rest-export

usage: ksconf rest-export [-h] [--output FILE] [--disable-auth-output]
 [--pretty-print] [-u | -D] [--url URL] [--app APP]
 [--user USER] [--owner OWNER] [--conf TYPE]
 [--extra-args EXTRA_ARGS]
 CONF [CONF ...]

Build an executable script of the stanzas in a configuration file that can be later applied to
a running Splunk instance via the Splunkd REST endpoint.

This can be helpful when pushing complex props and transforms to an instance where you only have
UI access and can't directly publish an app.

positional arguments:
 CONF Configuration file(s) to export settings from.

options:
 -h, --help show this help message and exit
 --output FILE, -t FILE
 Save the shell script output to this file. If not
 provided, the output is written to standard output.
 -u, --update Assume that the REST entities already exist. By
 default, output assumes stanzas are being created.
 -D, --delete Remove existing REST entities. This is a destructive
 operation. In this mode, stanza attributes are
 unnecessary and ignored. NOTE: This works for 'local'
 entities only; the default folder cannot be updated.
 --url URL URL of Splunkd. Default: https://localhost:8089
 --app APP Set the namespace (app name) for the endpoint
 --user USER Deprecated. Use --owner instead.
 --owner OWNER Set the object owner. Typically, the default of
 'nobody' is ideal if you want to share the
 configurations at the app-level.
 --conf TYPE Explicitly set the configuration file type. By
 default, this is derived from CONF, but sometimes it's
 helpful to set this explicitly. Can be any valid
 Splunk conf file type. Examples include: 'app',
 'props', 'tags', 'savedsearches', etc.
 --extra-args EXTRA_ARGS
 Extra arguments to pass to all CURL commands. Quote
 arguments on the command line to prevent confusion
 between arguments to ksconf vs curl.

Output Control:
 --disable-auth-output
 Turn off sample login curl commands from the output.
 --pretty-print, -p Enable pretty-printing. Make shell output a bit more
 readable by splitting entries across lines.

ksconf rest-publish

usage: ksconf rest-publish [-h] [--conf TYPE] [-m META] [--url URL]
 [--user USER] [--pass PASSWORD] [-k]
 [--session-key SESSION_KEY] [--app APP]
 [--owner OWNER] [--sharing {user,app,global}] [-D]
 CONF [CONF ...]

Publish stanzas in a .conf file to a running Splunk instance via REST. This
requires access to the HTTPS endpoint of Splunk. By default, ksconf will
handle both the creation of new stanzas and the update of existing stanzas.
This can be used to push full configuration stanzas where you only have REST
access and can't directly publish an app. Only attributes present in the conf
file are pushed. While this may seem obvious, this fact can have profound
implications in certain situations, like when using this command for
continuous updates. This means that it's possible for the source .conf to
ultimately differ from what ends up on the server's .conf file. One way to
avoid this, is to explicitly remove an object using '--delete' mode first, and
then insert a new copy of the object. Of course, this means that the object
will be unavailable. The other impact is that diffs only compares and shows a
subset of attribute. Be aware, that for consistency, the configs/conf-TYPE
endpoint is used for this command. Therefore, a reload may be required for the
server to use the published config settings.

positional arguments:
 CONF Configuration file(s) to export settings from.

options:
 -h, --help show this help message and exit
 --conf TYPE Explicitly set the configuration file type. By
 default, this is derived from CONF, but sometimes it's
 helpful to set this explicitly. Can be any valid
 Splunk conf file type. Examples include: 'app',
 'props', 'tags', 'savedsearches', etc.
 -m META, --meta META Specify one or more '.meta' files to determine the
 desired read & write ACLs, owner, and sharing for
 objects in the CONF file.
 --url URL URL of Splunkd. Default: https://localhost:8089
 --user USER Login username Splunkd. Default: admin
 --pass PASSWORD Login password Splunkd. Default: changeme
 -k, --insecure Disable SSL cert validation.
 --session-key SESSION_KEY
 Use an existing session token instead of using a
 username and password to login.
 --app APP Set the namespace (app name) for the endpoint
 --owner OWNER Set the user who owns the content. The default of
 'nobody' works well for app-level sharing.
 --sharing {user,app,global}
 Set the sharing mode.
 -D, --delete Remove existing REST entities. This is a destructive
 operation. In this mode, stanza attributes are
 unnecessary. NOTE: This works for 'local' entities
 only; the default folder cannot be updated.

ksconf snapshot

usage: ksconf snapshot [-h] [--output FILE] [--minimize] PATH [PATH ...]

Build a static snapshot of various configuration files stored within a
structured json export format. If the .conf files being captured are within a
standard Splunk directory structure, then certain metadata and namespace
information is assumed based on typical path locations. Individual apps or
conf files can be collected as well, but less metadata may be extracted.

positional arguments:
 PATH Directory from which to load configuration files. All
 .conf and .meta file are included recursively.

options:
 -h, --help show this help message and exit
 --output FILE, -o FILE
 Save the snapshot to the named files. If not provided,
 the snapshot is written to standard output.
 --minimize Reduce the size of the JSON output by removing
 whitespace. Reduces readability.

ksconf sort

usage: ksconf sort [-h] [--target FILE | --inplace] [-F] [-q] [-n LINES]
 FILE [FILE ...]

Sort a Splunk .conf file. Sort has two modes: (1) by default, the sorted
config file will be echoed to the screen. (2) the config files are updated
in-place when the '-i' option is used.

Manually managed conf files can be protected against changes by adding a comment containing the
string 'KSCONF-NO-SORT' to the top of any .conf file.

positional arguments:
 FILE Input file to sort, or standard input.

options:
 -h, --help show this help message and exit
 --target FILE, -t FILE
 File to write results to. Defaults to standard output.
 --inplace, -i Replace the input file with a sorted version. WARNING:
 This a potentially destructive operation that may
 move/remove comments.
 -n LINES, --newlines LINES
 Number of lines between stanzas.

In-place update arguments:
 -F, --force Force file sorting for all files, even for files
 containing the special 'KSCONF-NO-SORT' marker.
 -q, --quiet Reduce the output. Reports only updated or invalid
 files. This is useful for pre-commit hooks, for
 example.

ksconf unarchive

usage: ksconf unarchive [-h] [--dest DIR] [--app-name NAME]
 [--default-dir DIR] [--exclude EXCLUDE] [--keep KEEP]
 [--allow-local]
 [--git-sanity-check {off,changed,untracked,ignored}]
 [--git-mode {nochange,stage,commit}] [--no-edit]
 [--git-commit-args GIT_COMMIT_ARGS]
 SPL

Install or overwrite an existing app in a git-friendly way.
If the app already exists, steps will be taken to upgrade it safely.

The 'default' folder can be redirected to another path (i.e., 'default.d/10-upstream' or
other desirable path if you're using the 'ksconf combine' tool to manage extra layers).

positional arguments:
 SPL The path to the archive to install.

options:
 -h, --help show this help message and exit
 --dest DIR Set the destination path where the archive will be
 extracted. By default, the current directory is used.
 Sane values include: etc/apps, etc/deployment-apps,
 and so on.
 --app-name NAME The app name to use when expanding the archive. By
 default, the app name is taken from the archive as the
 top-level path included in the archive (by
 convention).
 --default-dir DIR Name of the directory where the default contents will
 be stored. This is a useful feature for apps that use
 a dynamic default directory that's created and managed
 by the 'combine' mode.
 --exclude EXCLUDE, -e EXCLUDE
 Add a file pattern to exclude from extraction.
 Splunk's pseudo-glob patterns are supported here. '*'
 for any non-directory match, '...' for ANY (including
 directories), and '?' for a single character.
 --keep KEEP, -k KEEP Specify a pattern for files to preserve during an
 upgrade. Repeat this argument to keep multiple
 patterns.
 --allow-local Allow local/* and local.meta files to be extracted
 from the archive.
 --git-sanity-check {off,changed,untracked,ignored}
 By default, 'git status' is run on the destination
 folder to detect working tree or index modifications
 before the unarchive process start. Sanity check
 choices go from least restrictive to most thorough:
 'off' prevents all safety checks. 'changed' aborts
 only upon local modifications to files tracked by git.
 'untracked' (the default) looks for changed and
 untracked files. 'ignored' aborts is (any) local
 changes, untracked, or ignored files are found.
 --git-mode {nochange,stage,commit}
 Set the desired level of git integration. The default
 mode is *stage*, where new, updated, or removed files
 are automatically handled for you. To prevent any 'git
 add' or 'git rm' commands from being run, pick the
 'nochange' mode.
 --no-edit Tell git to skip opening your editor on commit. By
 default, you will be prompted to review/edit the
 commit message. (Git Tip: Delete the content of the
 default message to abort the commit.)
 --git-commit-args GIT_COMMIT_ARGS, -G GIT_COMMIT_ARGS
 Extra arguments to pass to 'git'

ksconf xml-format

usage: ksconf xml-format [-h] [--indent INDENT] [--quiet] FILE [FILE ...]

Normalize and apply consistent XML indentation and CDATA usage for XML
dashboards and navigation files. Technically this could be used on *any* XML
file, but certain element names specific to Splunk's simple XML dashboards are
handled specially, and therefore could result in unusable results. The
expected indentation level is guessed based on the first element indentation,
but can be explicitly set if not detectable.

positional arguments:
 FILE One or more XML files to check. If '-' is given, then a
 list of files is read from standard input

options:
 -h, --help show this help message and exit
 --indent INDENT Number of spaces. This is only used if indentation cannot
 be guessed from the existing file.
 --quiet, -q Reduce the volume of output.

Changelog

Note

Changes in the devel branch, but not released yet are marked as DRAFT.

Ksconf 0.13

Switching to use Python’s namespace packages.
This is an internal change that should make future expansions easier but should have no impact on normal users.

New namespaces:

	ksconf

	ksconf.commands

	ksconf.plugins

Renames:

	ksconf/__init__ -> ksconf._ksconf

	ksconf/commands/__init__.py -> ksconf/command.py

Ksconf v0.13.1 (2023-10-05)

	Removed overlooked debug message at startup.

Ksconf v0.13.0 (2023-10-05)

	Switching to python package namespaces for for ksconf and ksconf.commands and created ksconf.plugins.
This allows for more flexible packaging of various ksconf components including optional subcommands and plugins.
Unless you are a python developer, you should never notice a difference.
Splunk App users should re-install to avoid any confusion.

Ksconf 0.12

Highlights:

	Add new ksconf subcommands for very basic, but previously missing, ksconf attr-get and ksconf attr-set.
These commands allow for easy target information for capture or update.

	Pre-commit hooks have been moved into their own ksconf-pre-commit repo.
To allow time for migration to the new repo, the existing hooks will remain for a few release before being removed.
To migrate, simply add -pre-commit to the end of the repo field, and update rev to v0.12.0 or later.

Packaging changes:

	Dropped hard lxml from requirements.
This is still handled automatically when using the pre-commit hooks (from the new repository).
But this may be missing.
To get access to all CLI functionality, run pip install ksconf[thirdparty],
or for the full experience use pip install ksconf[fully-loaded]

	Remove the use of the endpoints python package and shift to using importlib.metadata (or the equivalent backport), as it suggested by the original author of that package.
The original necessity of this library was to workaround performance issues in pkg_resources (and the fact that it’s no present in Splunk’s embedded python.
This move reduces code complexity but it does mean some additional runtime dependencies on older versions of Python.
In many cases, this really isn’t a new dependency, since pluggy requires it as well.

Ksconf v0.12.2 (2023-10-05)

	App building with Ksconf: Added a convenience method to allow running ksconf commands more easily during the build process.
You can now invoke ksconf using run_ksconf() method which allows direct execution of a ksconf command.
Previously this was accomplished by using run(), using Python interpreter internal path as the executable, launching the ksconf in “module” mode.
So this approach is simpler and in the future it may be invoked internally, removing the need for launching an additional Python process.

	Enhanced plugin error handling.

	Many little doc build fixes.

Ksconf v0.12.1 (2023-10-03)

	Introducing ksconf attr-get and ksconf attr-set - the newest and simplest ksconf commands ever!
Use this to quickly grab and/or update a specific stanzas, attribute combination from a conf file.

	Add new attribute-level matching logic to ksconf filter.
Use --attr-matches and/or --attr-not-matches to match specific attribute and value combinations for stanza matching.
This can be used to find props with a specific KV_MODE, find saved search containing a specific search command, or list indexes not using volume: designation.
See the ksconf filter docs for example usage.
Thanks to yohonet for inspiring this change, along with the new attr-get command.

	Add --in-place processing behavior for ksconf merge to simplify the process of merging new content into an existing conf file.

	Docs Improvements:
* Fixed documentation generation bug that prevented command line options from showing up in the per-command doc pages. (Broken since v0.10)
* Fixed docs embedded in the Splunk app (and possibly causing some other display issues on the main rtd site)

	Fixed some CLI file handling bug that resulted in broken use of - (stdin) and/or fancy shell commands involving <(some command) syntax, which can be a helpful trick to reduce the number of temporary files.

Ksconf v0.12.0 (2023-09-27)

	Drop lxml and endpoints dependencies.

	Moved pre-commit hooks to ksconf-pre-commit repo [https://github.com/Kintyre/ksconf-pre-commit], and started deprecation of the hooks in the main ksconf repo [https://github.com/Kintyre/ksconf].

Ksconf 0.11

Highlights:

	Ksconf is beginning to treat Splunk apps more holistically and not just as a collection of .conf files.

	Significant portions of this new code base is directly leveraged by the Ansible modules located in the cdillc.splunk [https://github.com/Kintyre/ansible-collection-splunk] collection, a sibling project to Ksconf.
some of the code code there has made it’s way into the core ksconf project in this release.

API Changes

	Added AppFacts to easily collect Splunk application name, version, label, and other nuggets from app.conf.

	Added AppManifest to inventory the contents of a Splunk application and create a unique content fingerprint that can be used to quickly identify application changes.

	Added ksconf.app.deploy to assist with Splunk application deployment planning and execution.

	Added ksconf.hookspec.KsconfHookSpecs to define all available pluggy [https://pluggy.readthedocs.io/en/latest/] integration points.
Anyone wanting to implement a new plugin should use the public-facing ksconf.hook module.

Ksconf v0.11.9 (2023-09-26)

	Splunk app packaging changes only. No need to update the package for CLI usage.

	Fix packaging bug impacting the Ksconf Splunk app. This issue was introduced in v0.11.6.
Thanks to yohonet for brining this to my attention.

	Note that this took two release cycles to fully resolve. (Ignore ksconf v0.11.8)

Ksconf v0.11.7 (2023-09-20)

	Support disabling of plugins by name via KSCONF_PLUGIN_DISABLE environment variable. This expects a space separated lists of plugin names.

	Add new plugins documentation.

Ksconf v0.11.6 (2023-09-20)

	Introducing plugin functionality using pluggy [https://pluggy.readthedocs.io/en/latest/] plugin management system.
This adds a small, single-package dependency that can greatly increase customization potential of ksconf.
The first demo of this can be seen in the ksconf-jinja-markdown package that enables .j2 payloads to be rendered by registering a custom Jinja filter named markdown2html.

Ksconf v0.11.5 (2023-08-25)

	Use atomic file operations for more updates (such as most .conf writing and app packaging).
This is enabled by the new context managers atomic_writer() and atomic_open().
Under the covers temporary files are written to and then renamed into place to ensure that the output file is either fully updated or not touched at all.
This should reduce possible data loss and/or confusion during some difficult to handle corner cases (i.e., disk full, or interrupted execution).

	Add new parse_string() function to enable simple parsing from a string.
(I’m not sure why it took me so long to add this; it’s so simple; and I’ve looked for this function dozens of times over the years, and always came up with a new StringIO workaround.)

	App Manifest changes:

	App manifest file format was updated to v2 which reports file mode as as familiar octal (string) instead of an integer.
This is easier to read in most cases.

	Add API level improvements to support reading/writing manifests when the archive is using a temporary filename.

	Improved various error messages, minor optimizations, and some minor security improvements.

Ksconf v0.11.4 (2023-06-09)

	Updated Jinja2 support to allow variables to be passed in for the combine and package operations.
To use Jinja2 rendering feature, use the --enable-handler=jinja option.
Forcing users to op-in to this behavior seems to be safest option moving forward.
To feed variables into the Jinja2 rendering process, use the --template-vars option.
Either pass a literal value or @filename.
Currently JSON literals as well as .json, .yaml and .conf files.

	Minor output fixes for combine (failed variable substitution)

	Rename LayerConfig to LayerContext. I doubt anyone is using this, but just in case.

Ksconf v0.11.3 (2023-05-17)

	Initial support for rendering Jinja2 templates in app layers, which can be used for app packaging and combine operations.
This isn’t really exposed via the CLI yet.
Notice that if you have *.j2 files in your apps that are NOT Jinja2 templates, this could cause problems for you.
There’s no way to disable this functionality as of yet.

	Move .conf and .spec combine handlers into handler functions.
This makes it easier to supporting additional file types with special merge-handling logic in the future and simplifies the code into smaller units.

	More internal embracing of pathlib and typing.

Ksconf v0.11.0 (2023-05-13)

	First release of all ksconf.app.* functionality!

	The unarchive command has been updated to use the new functionality.

	More embracing of Python 3, f-strings, and pathlib!

NOTE: If you don’t need for the new Splunk app functionality, there’s little value in upgrading to v0.11. There’s no new CLI features exposing this new functionality yet.

Disregard version v0.11.1, and v0.11.2 has minor internal fixes and shouldn’t be broadly used. They were also released on 2023-05-13.

Ksconf 0.10

Highlights:

	Ksconf now requires Python 3.7 or newer.

	The Python package was renamed ksconf.

API Changes

	Core layer combining logic now lives in LayerCombiner.
The new RepeatableCombiner class has logic for marker safety checks and settings for removing or preserving existing files.
The CombineCmd now contains only the command line functionality.

Ksconf v0.10.2 (2023-05-13)

	Fix an unarchive bug triggered by trailing slashes in --app-name.
Trailing slashes are removed automatically.
Any other / present will trigger an error and require the user to clarify.

Ksconf v0.10.1 (2023-03-07)

	Fix for pre-commit hook installation.
Pre-commit now uses an alternate shallow clone that fails to fetch the actual tag pointed to by rev.
The ksconf python packaging process relies on git metadata.
This results in an error message InvalidVersion: Invalid version: 'cec3615' in the pre-commit.log file.
See pre-commit #2610 [https://github.com/pre-commit/pre-commit/issues/2610] for additional background.

Ksconf v0.10.0 (2023-03-03)

Highlights:

	The official Python package was renamed ksconf.
The kintyre-splunk-conf package will continue to be released in parallel at least until version 1.0.
You can continue updating and using the kintyre-splunk-conf package but eventually startup warnings will be added to remind users to switch.

	Ksconf v0.10 and later requires Python 3.7 or newer.
If you need Python 2.7 or 3.6 support, please stick with the latest 0.9.x release of kintyre-splunk-conf.

	The KSCONF acronym has taken on a new meaning.
Originally, meaning Kintyre’s Splunk CONFiguration tool,
now becomes a recursive acronym: Ksconf Splunk CONFiguration tool.
Kintyre has been acquired by CDI LLC, and this option seemed least intrusive.

	Add support Dashboard Studio dashboards.
The JSON blobs inside of Simple XML payloads can now be formatted too.
Multiline searches are still difficult to diff, but there’s no way to fix that while using JSON.

More changes:

	Remove six built-in dependency.

	Refactor the combine logic into more reusable classes.
This simplifies the CLI logic for both the combine and package functionality.
The combine CLI and functionality remains unchanged.

	Updated package to use new combine new layer classes rather than making internal CLI calls to “combine”.
This has the potentially to be more efficient and allow for easier functionality expansions in the future.

	Deprecated the --layer_method=auto choice from the package command. This will be an error in the next release (v0.11).

	Add new layer-related dynamic variables for the package command.
Use {{layers_list}} to capture what unique layer names made their way into a tarball, and
use {{layers_hash}} when that list get too long to be manageable.

Bug fixes:

	Fixed sort bug where the user was incorrectly told that a file with errors was unexpectedly also successfully replaced.
The contradictory output messages have been cleaned up.
For clarity, this only occurred for inline replacement mode, and was purely a reporting issue, not a file handling problem.

	Fixed compatibility issues with rest-publish command and the splunk-sdk library around data type expectations.
A big thanks to bayeslearner (#95 [https://github.com/Kintyre/ksconf/issues/95]) for the fix.
If you run into any issues, try upgrading your version of splunk-sdk.

Ksconf 0.9

Highlights:

	Last version to support Python 2! It’s time.

API Changes

	Removed match_bwlist()
FilteredList and derived classes should be used instead.

	Updated interface for compare_cfgs and compare_stanzas.
(1) Removed the preserve_empty parameter and
(2) Replaced the awkwardly named allow_level0 parameter with a new replace_level attribute that can be set to global, stanza or key.
This new option can be used to control the level of detail in the output.

Ksconf v0.9.3 (2022-02-26)

	Added internal caching for AppVarMagic (ksconf package command) to reduce repeated variable expansion work.
This will likely go unnoticed by most, but it does speed up some operations in the cdillc.splunk.ksconf_package Ansible module.

	Minor docs corrections.

Ksconf v0.9.2 (2022-03-04)

	The filter command can now include/exclude stanzas based on the boolean value of disabled using the new --enabled-only or --disabled-only arguments.
The default behavior remains the same, that is, the disabled attribute is completely ignored.
Thanks to John B Splunker for inspiring this feature!

Ksconf v0.9.1 (2022-03-03)

	Ksconf now tries harder to preserve file modification times. This is supported in merge, combine and package commands.
Specifically, merged .conf files and concatenated files will keep the most recent modification time in the destination.
This should make the output of combine and package (by extension) more deterministic in many scenarios.

Ksconf v0.9.0 (2021-08-12)

Features & Enhancements:

	Add new --keep-existing option for ksconf combine to preserve certain files that exist within the target directory but not within any source.
Similarly the new --disable-cleanup option will prevent any files from being removed.
This is useful, for example if using ksconf combine to write apps into deployment-apps where Splunk automatically creates a local app.conf file, and the deletion and recreation of the file can result in unnecessary app re-deployments.
These new options can be used together; for example, one useful pattern is to use --disable-cleanup to block all removals while perfecting/testing --keep-existing patterns.

	Add support for previewing stanza changes with ksconf promote by combining --stanza X and --summary options at the same time. Thanks to guilhemmarchand for the suggestion. (#89 [https://github.com/Kintyre/ksconf/issues/89])

	New CLI args for ksconf diff.
(1) New --detail option to specify how to handle certain ‘replace’ levels which impacts the way certain changes are represented.
(2) New --format json for a more parsable output format.
Note: This json format shouldn’t be considered stable at this time. If you have ideas about how this could be used, please reach out.

	Allow enabling/disabling TTY colors via environmental variable. The new --disable-color option will disable color, or to disable more widely, add something like export KSCONF_TTY_COLOR=off to your bashrc profile or Windows environment variables.

Bug fixes:

	Fixed layer detection bugs for dir.d mode for layers. (1) Layers that weren’t immediately under the source directory were not detected, and
(2) layers existing beyond a symlink were not detected.
This change targeted for ksconf combine but may fix other similar issues.

	Fixed #91 [https://github.com/Kintyre/ksconf/issues/91]. where ksconf diff wouldn’t correctly handle empty stanzas in the second input file
(Reversing the order would sometimes worked to avoid the issue).
This was resolved by enabling some improved empty stanza handling in the conf comparison algorithms that were updated back in 0.7.10, but never globally applied. This has been resolved.

Documentation improvements

	New git tip: Use a gitdir: pointer to relocate the .git dir to avoid replicating it when a directory like master-apps is a git working copy.

	Additional quick use case in the cheatsheet page.
Demonstrate how ksconf could be used to list all “apps” present on a deployment server from the serverclass.conf file.

API Change:

	Replaced use of match_bwlist() with the FiltedListSplunkGlob class, which allows old code to be cleaned up and technically, there’s some expanded capabilities because of this (like many filters now supporting file://filter.txt type syntax, but this hasn’t been documented and may be left as an Easter egg; because who reads changelogs?)

	Dropped tty_color() which had already been replaced with the TermColor class.

Ksconf 0.8

Highlights:

	New command ksconf package is designed for both Splunk developers and admins * New module ksconf.builder helps build Splunk apps using a pipeline; or when external Python libraries are bundled into an app

	Legit layer support with built-in layer filtering capabilities is available in several commands

	Python 3! Head’s up: We’ll be dropping support for Python 2 in an upcoming release

Note

Come chat about ksconf on GitHub discussions [https://github.com/Kintyre/ksconf/discussions] even if it’s to say we should use some other forum to stay in touch.

What’s new:

	The new ksconf package command supports the creation of Splunk app .spl files from a source directory.
The package command can be used by admins to transfer apps around an organization, while keeping the local folder intact,
or by a developer who wants local to be automatically merged into default.
The app version can be set based on the latest git tag by simply saying --set-version={{git_tag}}.

	The ksconf.builder Python module is a API-only first for ksconf!
This build library allow caching of expensive deterministic build operations, and has out-of-the-box support for frequent build steps like adding Python modules locally using pip.
As the first feature with no CLI support, I’m exceeded to get input from the broader community on this approach.
Of course this is just an experimental first release.
As always, feedback welcome!

	Native support for layers!
It’s official, layers are now a proper ksconf feature, not just an abstract concept that you could throw together yourself given enough time and effort.
This does mean that ksconf has to be more opinionated, but the design supports switching layer methods,
which can be extended over time to support new different strategies as they emerge and are embraced by the community.
Supports layers filtering as a native feature. This has always been technically possible, but awkward to implement yourself.
Layer support is currently available in ksconf combine and ksconf package commands.

	Moving to Python 3 soon.
In preparation for the move to Python 3, I’ve added additional backport libraries to be installed when running Python 2.
Support for Python 2 will be dropped in a future release, and anyone still on Splunk 7 who can’t get a Python 3 environment will have to use an older version of ksconf.
Also note that when jumping to Python 3, we will likely be requiring Python 3.6 or newer right out of the gate. (This means dropping Python 2.7, 3.4 and 3.5 all at the same time.)
Whoohoo for f-strings!

	CLI option abbreviation has been disabled.
This could be a breaking change for existing scripts.
Hopefully no one was relying on this already, but in order to prevent long-term CLI consistency issues as new CLI arguments are added, this feature has been disabled for all version of Python.
This feature is only available, and was enabled by default, starting in Python 3.5.

	Removed insensitive language.
Specifically the terms ‘whitelist’ and ‘blacklist’ have been replaced, where possible.
Fortunately, these terms were not used in any CLI arguments, so there should be no user-facing changes as a result of this.

	Removed support for building a standalone executable (zipapp).
This packaging option was added in v0.4.3, and deprecated in v0.6.0 once the Splunk app install option became available.
I’m pretty sure this won’t be missed.

API Changes

	NEW API ksconf.builder
The documentation for this module needs work, and the whole API should be considered quite experimental.
The easiest way to get started is to look at the Build Example.

	NEW Context manager update_conf.
This enables super easy conf editing in Python with just a few lines of code.
See docs API docs for a usage example.

Developer changes:

	Formatting via autopep8 and isort (enforced by pre-commit)

	Better flake8 integration for bulk checking (run via: tox -e flake8,flake8-unittest)

Ksconf v0.8.7 (2020-04-29)

	Support combining *.conf.spec files in ksconf combine, thus allowing README.d to be it’s own layer.

	Fixed potential unarchive issue with older version of git where git add --all DIR is more explicit, but equivalent to the modern day, git add DIR.

Ksconf v0.8.6 (2020-04-20)

	Fixed install.py Splunk app CLI install helper script to support referencing a specific version of Python. This is needed on Splunk 8.0 if you’d like to use Python 3 (or Splunk 8.1 if you want to use Python 2.7, but please don’t.) I suppose this would also work with using a custom Python interpreter other than the ones Splunk ships with, but then why not install with pip, right? (Thanks to guilhem.marchand for bringing this issue to my attention.)

	Updated docs regarding changes to the use of install.py and fixed a bunch of spelling mistakes and other minor doc/comment tweaks.

	Fixed ASCII art issue.

Ksconf v0.8.5 (2020-04-07)

	Fixed packaging issue where external dependencies were missing.
This doesn’t impact the Splunk package install, or anyone running Python 3.6 or later.

Ksconf v0.8.4 (2020-03-22)

	CLI change: Replaced short option for --allowlist to be -a, before it was -w.
I assume this was left over early development where the argument was initial called --whitelist, but at this point -w is just confusing.
Normally, I’d keep -w for a period of time and issue a deprecation warning.
However, given that 0.8.0 was released less than a week ago, and that ksconf package is an “alpha” feature,
I’m going to make this change without prior warning.

	Add some safety checks to the package command to check for app naming issues (where the app folder doesn’t match [package] id value in app.conf), and hidden files and directories.

	Add new {{app_id}} variable that’s usable with the ksconf package command.

	Added a new optional argument to copy_files() called target for additional control over the destination path of artifacts copied into the build folder.

	Minor tweak to unhandled exceptions. The name of the exception class is now show, and may be helpful in some situations.

	When using make_missing in update_conf, missing directories will now be created too.

	Additional fixes to the Ksconf for Splunk App build.py script: Now explicitly creating a top-level ksconf folder.
It’s likely that this was the root cause of several other issues.

Ksconf v0.8.3 (2021-03-20)

	Fixed bugs created by v0.8.2 (yanked on pypi)

	Properly resolved issues with Splunk app building process.

	Open issue uncovered where ksconf package can produce a tarball that’s unusable by Splunkbase.

Ksconf v0.8.1 (2021-03-20)

	Fixed some build issues with the Splunk app. (The splunk app is now built with ksconf package and the ksconf.builder)

	Minor doc fix up; you know, the stuff typically found minutes after any new release :-)

Ksconf v0.8.0 (2021-03-19)

In addition to the 0.8 summary above, 0.8.0 specifically includes the following changes:

	Add automatic layer support.
Currently the two supported layer schemes are (1) explicit layers (really this will disable automatic layer detection), and (2) the dir.d format which uses the default.d/##-layer-name style directory support, which we previously promoted in the docs, but never really fully supported in a native way.
This new dir.d directory layout support also allows for multiple *.d folders in a single tree (so not just default.d), and if your apps have different layer-points in different apps, it’s all handled transparently.

	Layer selection support was added to the combine command.
This allows you to --include and --exclude layers as you see fit.
See the docs for more details and examples of this new functionality.
This works for both the new dir.d directories and the explicit layers, though moving to the dir.d format is highly encouraged.

	New cheatsheet example: Using ksconf package and splunk install app together.

	Updated the combine behavior to optimize for the situation where there is only a single conf input file provided.
This behavior leaves any .conf or .meta file untouched so there’s no sorting/normalizing or banner.
See #64 [https://github.com/Kintyre/ksconf/issues/64].

	Eliminated an “unknown command” error when one of the ksconf python modules has a SyntaxError.
The new behavior isn’t perfect (you may still see “unrecognized arguments”), but overall it’s still a step in the right direction.

Ksconf 0.7.x

New functionality, massive documentation improvements, metadata support, and Splunk app install fixes.

Release v0.7.10 (2021-03-19)

	Fixed bug where empty stanzas in the local file could result in deletion in default with ksconf promote.
Updated diff interface to improve handling of empty stanzas, but wider support is still needed across other commands; but this isn’t a high priority.

Release v0.7.9 (2020-09-23)

	Fixed bug where empty stanzas could be removed from .conf files.
This can be detrimental for capability::* entries in authorize.conf, for example.
A big thanks to nebffa for tracking down this bug!

Release v0.7.8 (2020-06-19)

	New automatic promote mode is now available using CLI arguments!
This allows stanzas to be selected for promotion from the CLI in batch and interactive modes.
This implementation borrows (and shares code) with the ksconf filter command so hopefully the CLI arguments look familiar.
It’s possible to promote a single stanza, a stanza wildcard, regex or invert the matching logic and promote everything except for the named stanza (blocklist).
Right now --stanza is the only supporting matching mode, but more can be added as needed.
A huge thanks to mthambipillai for providing a pull-request with an initial implementation of this feature!

	Added a new summary output mode (ksconf promote --summary) that will provide a quick summary of what content could be promoted.
This can be used along side the new --stanza filtering options to show the names of stanzas that can be promoted.

	Replaced insensitive terminology with race-neutral terms. Specifically the terms ‘blacklist’ and ‘whitelist’ have been replaced.
NOTE: This does not change any CLI attributes, but in a few cases the standard output terminology is slightly different.
Also terminology in .conf files couldn’t be updated as that’s controlled by Splunk.

	Fixed bug in the unarchive command where a locale folder was blocked as a local folder and where a nested default folder (nested under a Python package, for example) could get renamed if --default-dir was used, now only the top-most default folder is updated.
Also fixed an unlikely bug triggered when default/app.conf is missing.

	Fixed bug with minimize when the required --target argument is not given. This now results in a reminder to the user rather than an unhandled exception.

	Splunk app packaging fix. Write access to the app was previously not granted due to a spelling mistake in the metadata file.

Release v0.7.7 (2020-03-05)

	Added new --follow-symlink option to the combine command so that input directory structures with symbolic links can be treated the same as proper directories.

	Corrected Windows issue where wildcard (glob) patterns weren’t expanded by for check and sort. This is primarily a difference in how a proper shells (e.g., bash, csh, zsh) handle expansion natively vs CMD on Windows does not. However, since this is typically transparently handled by many CLI tools, we’ll follow suite. (BTW, running ksconf from the GIT Bash prompt is a great alternative.) Only the most minimalistic expansion rules will be available, (so don’t expect {props,transforms,app}.conf to work anytime soon), but this should be good enough for most use cases. Thanks to SID800 for reporting this bug.

	Fixed issues with the unarchive command when git is not installed or an app is being unarchived (installed/upgrade) into a location not managed by Git. Note that additional output is now enabled when the KSCONF_DEBUG environmental variable is set (in lieu of a proper verbose mode). Bug report provided by SID800.

	Enhanced ksconf --version output to include Git executable path and version information; as well as a platform dump. (Helpful for future bug reporting.)

	Added feature to disable the marker file (safety check) automatically created by the combine command for use in automated processing workflows.

	Updated pre-commit documentation and sample configurations to use rev rather than sha as the means of identifying upstream tags or revisions. Recent releases of pre-commit will warn you about this during each run.

	Fixed a temporary file cleanup issue during certain in-place file replacement operations. (If you found any unexpected *.tmp files, this could have been the cause.)

Release v0.7.6 (2019-08-15)

	Fresh review and cleanup of all docs! (A huge thank you to Brittany Barnett for this massive undertaking)

	Fixed unhandled exception when encountering a global stanza in metadata files.

	Expand some error messages, sanity checks, and added a new session token (--session-key) authentication option for rest-publish.

Release v0.7.5 (2019-07-03)

	Fixed a long-term bug where the diff output of a single-line attribute change was incorrectly represented in the textual output of ‘ksconf diff’ and the diff output in other commands. This resolves a combination of bugs, the first half of which was fixed in 0.7.3.

	Allow make_docs script to run on Windows, and other internal doc build process improvements.

Release v0.7.4 (2019-06-07)

	Inline the six module to avoid elusive bootstrapping cases where the module couldn’t be found.
This primarily impacts pre-commit users.
The ksconf.ext.* prefix is being used for this, and any other inlined third party modules we may need in the future.

	Other minor docs fixes and internal non-visible changes.

Release v0.7.3 (2019-06-05)

	Added the new ksconf xml-format command.

	The ksconf xml-format command brings format consistency to your XML representations of Simple XML dashboards and navigation files by fixing indentation automatically adding <![CDATA[...]]> blocks, as needed, to reduce the need for XML escaping, resulting in more readable source.

	Additionally, a new pre-commit hook named ksconf-xml-format was added to leverage this new functionality. It looks specifically for xml views and navigation files based on path. This may also include Advanced XML, which hasn’t been tested; So if you use Advanced XML, proceed with caution.

	Note that this adds lxml as a packaging dependency which is needed for pre-commit hooks, but not strictly required at run time for other ksconf commands. This is NOT ideal, and may change in the future in attempts to keep ksconf as light-weight and standalone as possible. One possible alternative is setting up a different repo for pre-commit hooks. Python packaging and distribution tips welcome.

	Fixed data loss bug in promote (interactive mode only) and improved some UI text and prompts.

	Fixed colorization of ksconf diff output where certain lines failed to show up in the correct color.

	Fixed bug where debug tracebacks didn’t work correctly on Python 2.7. (Enable using KSCONF_DEBUG=1.)

	Extended the output of ksconf --version to show the names and version of external modules, when present.

	Improved some resource allocation in corner cases.

	Tested with Splunk 7.3 (numeric similarity in version numbers is purely coincidental)

Attention

API BREAKAGE

The DiffOp output values for DIFF_OP_INSERT and DIFF_OP_DELETE have been changed in a backwards-compatible breaking way.
The values of a and b were previously reversed for these two operations, leading to some code confusion.

Release v0.7.2 (2019-03-22)

	Fixed bug where filter would crash when doing stanza matching if global entries were present. Global stanzas can be matched by searching for a stanza named default.

	Fixed broken pre-commit issue that occurred for the v0.7.1 tag. This also kept setup.py from working if the six module wasn’t already installed. Developers and pre-commit users were impacted.

Release v0.7.1 (2019-03-13)

	Additional fixes for UTF-8 BOM files which appear to happen more frequently with local files on Windows.
This time some additional unit tests were added so hopefully there are few regressions in the future.

	Add the ignore-missing argument to ksconf merge to prevent errors when input files are absent.
This allows bashisms Some_App/{{default,local}}/savedsearches.conf to work without errors if the local or default file is missing.

	Check for incorrect environment setup and suggest running sourcing setSplunkEnv to get a working environment.
See #48 [https://github.com/Kintyre/ksconf/issues/48] for more info.

	Minor improvements to some internal error handling, packaging, docs, and troubleshooting code.

Release v0.7.0 (2019-02-27)

Attention

For anyone who installed 0.6.x, we recommend a fresh install of the Splunk app due to packaging changes. This shouldn’t be an issue in the future.

General changes:

	Added new ksconf rest-publish command that supersedes the use of rest-export for nearly every use case. Warning: No unit-testing has been created for this command yet, due to technical hurdles.

	Added Cheat Sheet to the docs.

	Massive doc cleanup of hundreds of typos and many expanded/clarified sections.

	Significant improvement to entrypoint handling and support for conditional inclusion of 3rd party libraries with sane behavior on import errors, and improved warnings. This information is conveniently viewable to the user via ksconf --version.

	Refactored internal diff logic and added additional safeties and unit tests. This includes improvements to TTY colorization which should avoid previous color leaks scenarios that were likely if unhandled exceptions occur.

	New support for metadata handling.

	CLI change for rest-export: The --user argument has been replaced with --owner to keep clean separation between the login account and object owners. (The old argument is still accept for now.)

Splunk app changes:

	Modified installation of python package installation. In previous releases, various .dist-info folders were created with version-specific names leading to a mismatch of package versions after upgrade.
For this reason, we suggest that anyone who previously installed 0.6.x should do a fresh install.

	Changed Splunk app install script to install.py (it was bootstrap_bin.py). Hopefully this is more intuitive.

	Added Windows support to install.py.

	Now includes the Splunk Python SDK. Currently used for rest-publish but will eventually be used for additional functionally unique to the Splunk app.

Ksconf 0.6.x

Add deployment as a Splunk app for simplicity and significant docs cleanup.

Release v0.6.2 (2019-02-09)

	Massive rewrite and restructuring of the docs. Highlights include:

	Reference material has been moved out of the user manual into a different top-level section.

	Many new topics were added, such as

	Ksconf as external difftool

	How Splunk writes to conf files

	Configuration layers

	What’s so important about minimizing files?

	A new approach for CLI documentation. We’re moving away from the WALL OF TEXT thing.
(Yeah, it was really just the output from --help). That was limiting formatting,
linking, and making the CLI output way too long.

	Refreshed Splunk app icons. Add missing alt icon.

	Several minor internal cleanups. Specifically the output of --version had a face lift.

Release v0.6.1 (2019-02-07)

	(Trivial) Fixed some small issues with the Splunk App (online AppInspect)

Release v0.6.0 (2019-02-06)

	Add initial support for building ksconf into a Splunk app.

	App contains a local copy of the docs, helpful for anyone who’s working offline.

	Credit to Sarah Larson for the ksconf logos.

	No ksconf functionality exposed to the Splunk UI at the moment.

	Docs/Sphinx improvements (more coming)

	Begin work on cleaning up API docs.

	Started converting various document pages into reStructuredText for greatly improved docs.

	Improved PDF fonts and fixed a bunch of sphinx errors/warnings.

	Refactored the install docs into 2 parts. With the new ability to install ksconf as a Splunk app
it’s quite likely that most of the wonky corner cases will be less frequently needed, hence all
the more exotic content was moved into the “Advanced Install Guide”, tidying things up.

Ksconf 0.5.x

Add Python 3 support, new commands, support for external command plugins, tox and vagrant for testing.

Release v0.5.6 (2019-02-04)

	Fixes and improvements to the filter command. Found issue with processing from stdin,
inconsistency in some CLI arguments, and finished implementation for various output modes.

	Add logo (fist attempt).

Release v0.5.5 (2019-01-28)

	New ksconf filter command added for slicing up a conf file into smaller pieces. Think of this as
GREP that’s stanza-aware. Can also allow or block attributes, if desirable.

	Expanded rest-export CLI capabilities to include a new --delete option, pretty-printing,
and now supports stdin by allowing the user to explicitly set the file type using --conf.

	Refactored all CLI unittests for increased readability and long-term maintenance. Unit tests
now can also be run individually as scripts from the command line.

	Minor tweaks to the snapshot output format, v0.2. This feature is still highly experimental.

Release v0.5.4 (2019-01-04)

	New commands added:

	ksconf snapshot will dump a set of configuration files to a JSON formatted file. This can be used
used for incremental “snapshotting” of running Splunk apps to track changes overtime.

	ksconf rest-export builds a series of custom curl commands that can be used to publish or update
stanzas on a remote instance without file system access. This can be helpful when pushing
configs to Splunk Cloud when all you have is REST (splunkd) access. This command is indented
for interactive admin not batch operations.

	Added the concept of command maturity. A listing is available by running ksconf --version

	Fix typo in KSCONF_DEBUG.

	Resolving some build issues.

	Improved support for development/testing environments using Vagrant (fixes) and Docker (new).
Thanks to Lars Jonsson for these enhancements.

Release v0.5.3 (2018-11-02)

	Fixed bug where ksconf combine could incorrectly order directories on certain file systems
(like ext4), effectively ignoring priorities. Repeated runs may resulted in undefined behavior.
Solved by explicitly sorting input paths forcing processing to be done in lexicographical order.

	Fixed more issues with handling files with BOM encodings. BOMs and encodings in general are NOT
preserved by ksconf. If this is an issue for you, please add an enhancement issue.

	Add Python 3.7 support

	Expand install docs specifically for offline mode and some OS-specific notes.

	Enable additional tracebacks for CLI debugging by setting KSCONF_DEBUG=1 in the environment.

Release v0.5.2 (2018-08-13)

	Expand CLI output for --help and --version

	Internal cleanup of CLI entry point module name. Now the ksconf CLI can be invoked as
python -m ksconf, you know, for anyone who’s into that sort of thing.

	Minor docs and CI/testing improvements.

Release v0.5.1 (2018-06-28)

	Support external ksconf command plugins through custom entry_points, allowing for others to
develop their own custom extensions as needed.

	Many internal changes: Refactoring of all CLI commands to use new entry_points as well as pave
the way for future CLI unittest improvements.

	Docs cleanup / improvements.

Release v0.5.0 (2018-06-26)

	Python 3 support.

	Many bug fixes and improvements resulting from wider testing.

Ksconf 0.4.x

Ksconf 0.4.x switched to a modular code base, added build/release automation, PyPI package
registration (installation via pip install and, online docs.

Release v0.4.10 (2018-06-26)

	Improve file handling to avoid “unclosed file” warnings. Impacted parse_conf(),
write_conf(), and many unittest helpers.

	Update badges to report on the master branch only. (No need to highlight failures on feature or
bug-fix branches.)

Release v0.4.9 (2018-06-05)

	Add some missing docs files

Release v0.4.8 (2018-06-05)

	Massive cleanup of docs: revamped install guide, added ‘standalone’ install procedure and
developer-focused docs. Updated license handling.

	Updated docs configuration to dynamically pull in the ksconf version number.

	Using the classic ‘read-the-docs’ Sphinx theme.

	Added additional PyPi badges to README (GitHub home page).

Release v0.4.4-v0.4.7 (2018-06-04)

	Deployment and install fixes (It’s difficult to troubleshoot/test without making a new release!)

Release v0.4.3 (2018-06-04)

	Rename PyPI package kintyre-splunk-conf

	Add support for building a standalone executable (zipapp).

	Revamp install docs and location

	Add GitHub release for the standalone executable.

Release v0.4.2 (2018-06-04)

	Add readthedocs.io support

Release v0.4.1 (2018-06-04)

	Enable PyPI production package building

Release v0.4.0 (2018-05-19)

	Refactor entire code base. Switched from monolithic all-in-one file to clean-cut modules.

	Versioning is now discoverable via ksconf --version, and controlled via git tags (via
git describe --tags).

Module layout

	ksconf.conf.* - Configuration file parsing, writing, comparing, and so on

	ksconf.util.* - Various helper functions

	ksconf.archive - Support for decompressing Splunk apps (tgz/zip files)

	ksconf.vc.git - Version control support. Git is the only VC tool supported for now. (Possibly ever)

	ksconf.commands.<CMD> - Modules for specific CLI functions. I may make this extendable, eventually.

Ksconf 0.3.x

First public releases.

Release v0.3.2 (2018-04-24)

	Add AppVeyor for Windows platform testing

	Add codecov integration

	Created ConfFileProxy.dump()

Release v0.3.1 (2018-04-21)

	Setup automation via Travis CI

	Add code coverage

Release v0.3.0 (2018-04-21)

	Switched to semantic versioning.

	0.3.0 feels representative of the code maturity.

Ksconf legacy releases

Ksconf started in a private Kintyre repo. There are no official releases; all git history has been
rewritten.

Release legacy-v1.0.1 (2018-04-20)

	Fixes to blocklist support and many enhancements to ksconf unarchive.

	Introduces parsing profiles.

	Lots of bug fixes to various subcommands.

	Added automatic detection of ‘subcommands’ for CLI documentation helper script.

Release legacy-v1.0.0 (2018-04-16)

	This is the first public release. First work began Nov 2017 (as a simple conf ‘sort’ tool,
which was imported from yet another repo.) Version history was extracted/rewritten/preserved
as much as possible.

	Mostly stable features.

	Unit test coverage over 85%

	Includes pre-commit hook configuration (so that other repos can use this to run ksconf sort
and ksconf check against their conf files.

Known issues

General

	File encoding issues: Byte order markers and specific encodings are NOT preserved.
All files are encoding using UTF-8 upon update, which is Splunk’s expected encoding.

Splunk app

	File cleanup issues after KSCONF app for Splunk upgrades (impacts versions prior to 0.7.0).
Old .dist-info folders or other stale files may be left around after upgrades.
If you encounter this issue, either uninstall and delete the ksconf directory or manually remove the old ‘bin’ folder and (re)upgrade to the latest version.
The fix in 0.7.0 is to remove the version-specific portion of the folder name. (GH issue #37)

See more confirmed bugs [https://github.com/Kintyre/ksconf/labels/bug]
in the issue tracker.

Advanced Installation Guide

The content in this document is a subsidiary to the Installation Guide because it became
disorganized and the number of possible Python installation combinations and snags intensified.
However, that culminated in the collection of excellent information that is provided here.
Please remember, the Splunk app install approach was introduced to alleviate several of these issues.

A portion of this document is targeted at those who can’t install packages as Admin or are forced to
use Splunk’s embedded Python. For everyone else, please start with the one-liner:

pip install -U ksconf

This document includes some legacy information that may not longer be true.
Generally speaking, installing Python packages has become much easier since Python 2 went away.
However, there are still some weird corner cases out there so this document has be kept around for reference.

Tip

Do any of these words for phrases strike fear in your heart?

	
	pip

	pipenv

	virtualenv

	
	wheel

	pyenv (not the same as pyvenv)

	python3.7 vs python37 vs py -37

	
	PYTHONPATH

	LD_LIBARY

	RedHat Software Collections

If this list seems daunting, head over to Install Splunk App. There’s no shame in it.

Contents

	Advanced Installation Guide

	Flowchart

	Installation

	Install from PyPI with PIP

	Install ksconf into a virtual environment

	Install ksconf system-wide

	CentOS (RedHat derived) distros

	RedHat Software Collections

	On Linux or Mac

	On Windows

	Offline installation

	Offline installation steps

	Offline installation of pip

	Use pip without installing it

	Frequent gotchas

	PIP Install TLS Error

	No module named ‘command.install’

	Troubleshooting

	Check Python version

	Check PIP Version

	Validate the install

	Resources

Flowchart

(Unfinished; more of a brainstorm at this point…)

	Is Python installed? (OS level)

	Is the version greater than 3.7?

	Do you have admin access? (root/Administrator; or can you get it? How hard? Will you need it each time you upgrade the ksconf?)

	Do you already have a large Python deployment or dependency? (If so, you’ll probably be fine. Use venv [https://docs.python.org/3/library/venv.html])

	Do you have any prior Python packaging or administration experience?

	Are you dealing with some vendor-specific solution?

	Example: RedHat Software Collections – where they realize their software is way too old, so
they try to make it possible to install newer version of things like Python, but since they
aren’t native or the default, you still end up jumping through a bunch of wonky hoops)

	Do you have Internet connectivity? (air gap or blocked outbound traffic, or proxy)

	Do you want to build/deploy your own ksconf extensions? If so, the Python package is a better option.
(But at that point, you can probably already handle any packaging issues yourself.)

Installation

There are several ways to install ksconf.
Technically, all standard Python packaging approaches should work just fine.
However, for non-Python developers, there are some snags.
Installation options are listed from the most easy and recommended, to more obscure and difficult:

Install from PyPI with PIP

The preferred installation method is to install via the standard Python package tool pip. Ksconf
can be installed via the registered ksconf [https://pypi.org/project/ksconf] package using the standard Python process.

There are 2 popular variations, depending on whether or not you would like to install for all users
or test it locally.

Install ksconf into a virtual environment

Use this option if you don’t have admin access

Installing ksconf with venv is a great way to test the tool without requiring admin
privileges and has many advantages for a production install. Here are the basic steps to get
started.

Note

Virtualenv vs venv

We used to recommend using virtualenv [https://virtualenv.pypa.io/en/stable/], which worked with Python 2 and 3.
But since Python now ships with venv [https://docs.python.org/3/library/venv.html], there’s no functional differences between the two approaches, we now suggest using ‘venv’.
That being said, virtualenv still works fine and will continue to be supported.

Please change venv to a suitable path for your environment.

Create and activte new 'venv' virtual environment
python3 -m venv venv
source venv/bin/activate

pip install ksconf

Note

Windows users

The above virtual environment activation should be run as venv\Scripts\activate.bat.

Install ksconf system-wide

Important

This requires admin access.

This is the absolute easiest install method where ‘ksconf’ is available to all users on the system
but it requires root access and pip must be installed and up-to-date.

On Mac or Linux, run:

sudo pip install ksconf

On Windows, run this command from an Administrator console.

pip install ksconf

CentOS (RedHat derived) distros

Enable the EPEL repo so that `pip` can be installed.
sudo yum install -y epel-release

Install pip
sudo yum install -y python-pip

Install ksconf (globally, for all users)
sudo pip install ksconf

RedHat Software Collections

The following assumes the python38 software collection, but other version of Python are supported
too. The initial setup and deployment of Software Collections is beyond the scope of this doc.

sudo scl enable python38 python -m pip install ksconf

Hint

Missing pip?

If pip is missing from a RHSC, then install the following rpm.

yum install python38-python-pip

Unfortunately, the ksconf entrypoint script (in the bin folder) will not work correctly on it’s
own because it doesn’t know about the scl environment, nor is it in the default PATH. To solve this,
run the following:

sudo cat > /usr/local/bin/ksconf <<HERE
#!/bin/sh
source scl_source enable python27
exec /opt/rh/python27/root/usr/bin/ksconf "$@"
HERE
chmod +x /usr/local/bin/ksconf

On Linux or Mac

Download the latest ksconf wheel [https://pypi.org/project/ksconf/#files] file from PyPI. The path to this download will be
set in the pkg variable as shown below.

Setup the shell:

export SPLUNK_HOME=/opt/splunk
export pkg=~/Downloads/kintyre_splunk_conf-0.4.9-py2.py3-none-any.whl

Run the following:

cd $SPLUNK_HOME
mkdir Kintyre
cd Kintyre
Unzip the 'kconf' folder into SPLUNK_HOME/Kintyre
unzip "$pkg"

cat > $SPLUNK_HOME/bin/ksconf <<HERE
#!/bin/sh
export PYTHONPATH=$PYTHONPATH:$SPLUNK_HOME/Kintyre
exec $SPLUNK_HOME/bin/python -m ksconf \$*
HERE
chmod +x $SPLUNK_HOME/bin/ksconf

Test the install:

ksconf --version

On Windows

	Open a browser and download the latest ksconf wheel [https://pypi.org/project/ksconf/#files] file from PyPI.

	Rename the .whl extension to .zip. (This may require showing file extensions in Explorer.)

	Extract the zip file to a temporary folder. (This should create a folder named “ksconf”)

	Create a new folder called “Kintyre” under the Splunk installation path (aka SPLUNK_HOME)
By default, this is C:\Program Files\Splunk.

	Copy the “ksconf” folder to %SPLUNK_HOME%\Kintyre.

	Create a new batch file called ksconf.bat and paste in the following. Be sure to
adjust for a non-standard %SPLUNK_HOME% value, if necessary.

@echo off
SET SPLUNK_HOME=C:\Program Files\Splunk
SET PYTHONPATH=%SPLUNK_HOME%\bin;%SPLUNK_HOME%\Python-3.7\Lib\site-packages\win32;%SPLUNK_HOME%\Python-3.7\Lib\site-packages;%SPLUNK_HOME%\Python-3.7\Lib
SET PYTHONPATH=%PYTHONPATH%;%SPLUNK_HOME%\Kintyre
CALL "%SPLUNK_HOME%\bin\python.exe" -m ksconf %*

	Move ksconf.bat to the Splunk\bin folder. (This assumes that %SPLUNK_HOME%/bin is part of
your %PATH%. If not, add it, or find an appropriate install location.)

	Test this by running ksconf --version from the command line.

Offline installation

Installing ksconf to an offline or network restricted computer requires three steps: (1) download
the latest packages from the Internet to a staging location, (2) transfer the staged content (often
as a zip file) to the restricted host, and (3) use pip to install packages from the staged copy.
Fortunately, pip makes offline workflows quite easy to achieve. Pip can download a Python package
with all dependencies stored as wheels files into a single directory, and pip can be told to install
from that directory instead of attempting to talk to the Internet.

The process of transferring these files is very organization-specific. The example below shows the
creation of a tarball (since tar is universally available on Unix systems), but any acceptable
method is fine. If security is a high concern, this step is frequently where safety checks are
implemented: such as, antivirus scans, static code analysis, manual inspection, and/or
comparison of cryptographic file hashes.

One additional use-case for this workflow, is to ensure the exact same version of all packages are
deployed consistently across all servers and environments. Often, building a requirements.txt file
with pip freeze, is a more appropriate solution. Alternatively, consider using pipenv lock
for even more security benefits.

Offline installation steps

Important

Pip must be installed on the destination server for this process to work. If pip is NOT installed,
see the Offline installation of pip section below.

Step 1: Use pip to download the latest package and their dependencies. Be sure to use the same
version of Python that is running on destination machine.

download packages
python3 -m pip download -d ksconf-packages ksconf

A new directory named ‘ksconf-packages’ will be created and will contain the necessary *.whl files.

Step 2: Transfer the directory or archive to the remote computer. Insert whatever security and
file copy procedures necessary for your organization.

Compress directory (on staging computer)
tar -czvf ksconf-packages.tgz ksconf-packages

Copy file using whatever means (for example, scp)
scp ksconf-packages.tgz user@server:/tmp/ksconf-packages.tgz

Extract the archive (on destination server)
tar -xzvf ksconf-packages.tgz

Step 3:

Install ksconf package with pip
pip install --no-index --find-links=ksconf-packages ksconf

Test the installation
ksconf --version

The ksconf-packages folder can now be safely removed.

Offline installation of pip

Use the recommended pip install procedures listed elsewhere if possible. But if a remote
bootstrap of pip is your only option, then here are the steps. (This process mirrors the steps
above and can be combined, if needed.)

Step 1: Fetch bootstrap script and necessary wheels

mkdir ksconf-packages
curl https://bootstrap.pypa.io/get-pip.py -o ksconf-packages/get-pip.py
python3 -m pip download -d /tmp/my_packages pip setuptools wheel

The ksconf-packages folder should contain 1 script, and 3 wheel (*.whl) files.

Step 2: Archive and/or copy to offline server

Step 3: Bootstrap pip

sudo python get-pip.py --no-index --find-links=ksconf-packages/

Test with
pip --version

Use pip without installing it

If you have a copy of the pip*.whl (wheel) file, then it can be executed directly by Python. This
can be used to run pip without actually installing it, or for installing pip initially (bypassing the
get-pip.py script step noted above.)

Here’s an example of how this could work:

Step 1: Download the pip wheel on a machine where pip works, by running:

pip download pip -d .

This will create a file like pip-19.0.1-py2.py3-none-any.whl in the current working directory.

Step 2: Copy the pip wheel to another machine (likely where pip isn’t installed.)

Step 3: Execute the wheel by running:

python pip-19.0.1-py2.py3-none-any.whl/pip list

Substitute the list command with whatever action you need (like install or whatever).

Frequent gotchas

PIP Install TLS Error

If pip throws an error message like the following:

There was a problem confirming the ssl certificate: [SSL: TLSV1_ALERT_PROTOCOL_VERSION] tlsv1 alert protocol version
...
No matching distribution found for setuptools

The problem is likely caused by changes to PyPI website in April 2018 when support for TLS v1.0 and
1.1 were removed. Downloading new packages requires upgrading to a new version of pip. Like so:

Upgrade pip as follows:

curl https://bootstrap.pypa.io/get-pip.py | python

Note: Use sudo python above if not in a virtual environment.

Helpful links:

	Not able to install Python packages [SSL: TLSV1_ALERT_PROTOCOL_VERSION] [https://stackoverflow.com/a/49769015/315892]

	‘pip install’ fails for every package (“Could not find a version that satisfies the requirement”) [https://stackoverflow.com/a/49748494/315892]

No module named ‘command.install’

If, while trying to install pip or run a pip command you see the following error:

ImportError: No module named command.install

Likely this is because you are using a crippled version of Python; like the one that ships with
Splunk. This won’t work. Either install the Splunk app package from Splunkbase or install using the
OS-level Python.

Troubleshooting

Here are a few fact gathering type commands that may help you begin to track down problems.

Check Python version

Check your installed Python version by running:

python --version

Note that Linux distributions and Mac OS X that ship with multiple versions of Python may have
renamed this to python3, python3.8 or similar.

Check PIP Version

pip --version

If you are running a different Python interpreter version, you can instead run this as:

python3 -m pip --version

Validate the install

Confirm installation with the following command:

ksconf --version

If this works, it means that ksconf installed and is part of your PATH and should be useable
everywhere in your system. Go forth and conquer!

If this doesn’t work, here are a few things to try:

	Check that your PATH is set correctly.

	Try running ksconf as a “module” (sometimes works around a PATH issue). Run python -m ksconf

	If you’re running the Splunk app, try running the following:

cd $SPLUNK_HOME/etc/apps/ksconf/bin/lib
python -m ksconf --version

If this works, then the issue is with PATH.

It may be helpful to uninstall (remove) the Splunk app and reinstall from scratch.

Resources

	Python packaging [https://docs.python.org/3/installing/index.html] docs provide a general overview on installing Python
packages, how to install per-user vs install system-wide.

	Install PIP [https://pip.pypa.io/en/stable/installing/] docs explain how to bootstrap or upgrade
pip the Python packaging tool. Python 3 comes with this by default, but some Linux distros break this into a separate package.

License

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 Copyright 2019 Kintyre

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

API Reference

Note

As of now, no assumptions should be made about APIs remaining stable

KSCONF is first and foremost a CLI tool, so backwards incompatible changes are more of a concern for CLI breakage than for API breakage.
That being said, there are a number of helpful features in the core ksconf Python module.
So if anyone is interested in using the API, please feel free to do so, but let us know how you are using it
and we’ll find a way to keep the the important bits stable.
We’d love to make it more clear what APIs are stable and which are likely to change.

As of right now, the general rule of thumb is this:
Anything well-covered by the unit tests should be be fairly safe to build on top of, but again, ping us.

KSCONF API

	ksconf
	ksconf namespace
	Subpackages
	ksconf.app package

	ksconf.builder package

	ksconf.commands namespace

	ksconf.conf package

	ksconf.util package

	ksconf.vc package

	Submodules

	ksconf.archive module
	GenArchFile

	extract_archive()

	gaf_filter_name_like()

	gen_arch_file_remapper()

	sanity_checker()

	ksconf.cli module
	build_cli_parser()

	check_py()

	check_py_sane()

	cli()

	handle_cmd_failed()

	ksconf.combine module
	LayerCombiner

	LayerCombinerException

	handle_merge_conf_files()

	handle_spec_concatenate()

	register_handler()

	ksconf.command module
	ConfFileType

	KsconfCmd

	add_splunkd_access_args()

	add_splunkd_namespace()

	dedent()

	get_all_ksconf_cmds()

	get_entrypoints()

	ksconf.compat module
	Dict

	List

	Set

	Tuple

	cache()

	ksconf.consts module
	SmartEnum

	is_debug()

	ksconf.filter module
	FilteredList

	FilteredListRegex

	FilteredListSplunkGlob

	FilteredListString

	FilteredListWildcard

	create_filtered_list()

	ksconf.hook module
	BadPluginWarning

	get_plugin_manager()

	ksconf.hookspec module
	KsconfHookSpecs

	ksconf.layer module
	DirectLayerRoot

	DotDLayerRoot

	FileFactory

	LayerContext

	LayerException

	LayerFile

	LayerFile_Jinja2

	LayerFilter

	LayerRenderedFile

	LayerRootBase

	LayerUsageException

	register_file_handler()

	ksconf.package module
	AppPackager

	AppVarMagic

	AppVarMagicException

	PackagingException

	find_conf_in_layers()

	get_merged_conf()

	normalize_directory_mtime()

	ksconf.setup_entrypoints module
	Ep

	LocalEntryPoint

	debug()

	get_entrypoints_fallback()

	get_entrypoints_setup()

	ksconf.xmlformat module
	FileReadlinesCache

	SplunkSimpleXmlFormatter

	Build example
	Usage notes

ksconf

	ksconf namespace
	Subpackages
	ksconf.app package
	Submodules

	ksconf.app.deploy module

	ksconf.app.facts module

	ksconf.app.manifest module

	Module contents

	ksconf.builder package
	Submodules

	ksconf.builder.cache module

	ksconf.builder.core module

	ksconf.builder.steps module

	Module contents

	ksconf.commands namespace
	Submodules

	ksconf.commands.attr module

	ksconf.commands.check module

	ksconf.commands.combine module

	ksconf.commands.diff module

	ksconf.commands.filter module

	ksconf.commands.merge module

	ksconf.commands.minimize module

	ksconf.commands.package module

	ksconf.commands.promote module

	ksconf.commands.restexport module

	ksconf.commands.restpublish module

	ksconf.commands.snapshot module

	ksconf.commands.sort module

	ksconf.commands.unarchive module

	ksconf.commands.xmlformat module

	ksconf.conf package
	Submodules

	ksconf.conf.delta module

	ksconf.conf.merge module

	ksconf.conf.meta module

	ksconf.conf.parser module

	Module contents

	ksconf.util package
	Submodules

	ksconf.util.compare module

	ksconf.util.completers module

	ksconf.util.file module

	ksconf.util.rest module

	ksconf.util.terminal module

	Module contents

	ksconf.vc package
	Submodules

	ksconf.vc.git module

	Module contents

	Submodules

	ksconf.archive module
	GenArchFile
	GenArchFile.mode

	GenArchFile.path

	GenArchFile.payload

	GenArchFile.size

	extract_archive()

	gaf_filter_name_like()

	gen_arch_file_remapper()

	sanity_checker()

	ksconf.cli module
	build_cli_parser()

	check_py()

	check_py_sane()

	cli()

	handle_cmd_failed()

	ksconf.combine module
	LayerCombiner
	LayerCombiner.add_layer_filter()

	LayerCombiner.combine()

	LayerCombiner.combine_files()

	LayerCombiner.conf_file_re

	LayerCombiner.debug()

	LayerCombiner.filetype_handlers

	LayerCombiner.log()

	LayerCombiner.post_combine()

	LayerCombiner.pre_combine_inventory()

	LayerCombiner.prepare()

	LayerCombiner.prepare_target_dir()

	LayerCombiner.register_handler()

	LayerCombiner.set_layer_root()

	LayerCombiner.set_source_dirs()

	LayerCombiner.spec_file_re

	LayerCombinerException

	handle_merge_conf_files()

	handle_spec_concatenate()

	register_handler()

	ksconf.command module
	ConfFileType

	KsconfCmd
	KsconfCmd.add_parser()

	KsconfCmd.description

	KsconfCmd.exit()

	KsconfCmd.format

	KsconfCmd.help

	KsconfCmd.launch()

	KsconfCmd.maturity

	KsconfCmd.parse_conf()

	KsconfCmd.parse_extra_vars()

	KsconfCmd.post_run()

	KsconfCmd.pre_run()

	KsconfCmd.register_args()

	KsconfCmd.run()

	KsconfCmd.version_extra

	add_splunkd_access_args()

	add_splunkd_namespace()

	dedent()

	get_all_ksconf_cmds()

	get_entrypoints()

	ksconf.compat module
	Dict

	List

	Set

	Tuple

	cache()

	ksconf.consts module
	SmartEnum
	SmartEnum.CREATE

	SmartEnum.NOCHANGE

	SmartEnum.UPDATE

	is_debug()

	ksconf.filter module
	FilteredList
	FilteredList.IGNORECASE

	FilteredList.INVERT

	FilteredList.VERBOSE

	FilteredList.feed()

	FilteredList.feedall()

	FilteredList.has_rules

	FilteredList.match()

	FilteredList.match_path()

	FilteredList.match_stanza()

	FilteredList.reset_counters()

	FilteredListRegex
	FilteredListRegex.calc_regex_flags()

	FilteredListRegex.reset_counters()

	FilteredListSplunkGlob

	FilteredListString
	FilteredListString.reset_counters()

	FilteredListWildcard

	create_filtered_list()

	ksconf.hook module
	BadPluginWarning

	get_plugin_manager()

	ksconf.hookspec module
	KsconfHookSpecs
	KsconfHookSpecs.ksconf_cli_init()

	KsconfHookSpecs.ksconf_cli_modify_argparse()

	KsconfHookSpecs.ksconf_cli_process_args()

	KsconfHookSpecs.modify_jinja_env()

	KsconfHookSpecs.package_pre_archive()

	KsconfHookSpecs.post_combine()

	ksconf.layer module
	DirectLayerRoot
	DirectLayerRoot.add_layer()

	DirectLayerRoot.order_layers()

	DotDLayerRoot
	DotDLayerRoot.Layer

	DotDLayerRoot.apply_filter()

	DotDLayerRoot.layer_regex

	DotDLayerRoot.list_layers()

	DotDLayerRoot.mount_regex

	DotDLayerRoot.order_layers()

	DotDLayerRoot.set_root()

	FileFactory
	FileFactory.disable()

	FileFactory.enable()

	FileFactory.list_available_handlers()

	FileFactory.register_handler()

	LayerContext
	LayerContext.block_dirs

	LayerContext.block_files

	LayerContext.follow_symlink

	LayerContext.template_variables

	LayerException

	LayerFile
	LayerFile.layer

	LayerFile.logical_path

	LayerFile.match()

	LayerFile.mtime

	LayerFile.physical_path

	LayerFile.relative_path

	LayerFile.resource_path

	LayerFile.size

	LayerFile.stat

	LayerFile_Jinja2
	LayerFile_Jinja2.jinja2_env

	LayerFile_Jinja2.match()

	LayerFile_Jinja2.render()

	LayerFile_Jinja2.transform_name()

	LayerFilter
	LayerFilter.add_rule()

	LayerFilter.evaluate()

	LayerRenderedFile
	LayerRenderedFile.logical_path

	LayerRenderedFile.physical_path

	LayerRenderedFile.render()

	LayerRenderedFile.resource_path

	LayerRenderedFile.transform_name()

	LayerRenderedFile.use_secure_delete

	LayerRootBase
	LayerRootBase.Layer

	LayerRootBase.add_layer()

	LayerRootBase.apply_filter()

	LayerRootBase.get_file()

	LayerRootBase.get_layers_by_name()

	LayerRootBase.iter_all_files()

	LayerRootBase.list_files()

	LayerRootBase.list_layer_names()

	LayerRootBase.list_layers()

	LayerRootBase.list_logical_files()

	LayerRootBase.list_physical_files()

	LayerRootBase.order_layers()

	LayerUsageException

	register_file_handler()

	ksconf.package module
	AppPackager
	AppPackager.block_local()

	AppPackager.blocklist()

	AppPackager.check()

	AppPackager.cleanup()

	AppPackager.combine()

	AppPackager.expand_new_only()

	AppPackager.expand_var()

	AppPackager.freeze()

	AppPackager.make_archive()

	AppPackager.make_manifest()

	AppPackager.merge_local()

	AppPackager.require_active_context()

	AppPackager.update_app_conf()

	AppVarMagic
	AppVarMagic.expand()

	AppVarMagic.get_app_id()

	AppVarMagic.get_build()

	AppVarMagic.get_git_head()

	AppVarMagic.get_git_last_rev()

	AppVarMagic.get_git_tag()

	AppVarMagic.get_layers_hash()

	AppVarMagic.get_layers_list()

	AppVarMagic.get_version()

	AppVarMagic.git_single_line()

	AppVarMagic.list_vars()

	AppVarMagicException

	PackagingException

	find_conf_in_layers()

	get_merged_conf()

	normalize_directory_mtime()

	ksconf.setup_entrypoints module
	Ep
	Ep.formatted

	Ep.module_name

	Ep.name

	Ep.object_name

	LocalEntryPoint
	LocalEntryPoint.load()

	debug()

	get_entrypoints_fallback()

	get_entrypoints_setup()

	ksconf.xmlformat module
	FileReadlinesCache
	FileReadlinesCache.convert_filename()

	FileReadlinesCache.readlines()

	SplunkSimpleXmlFormatter
	SplunkSimpleXmlFormatter.cdata_tags()

	SplunkSimpleXmlFormatter.expand_tags()

	SplunkSimpleXmlFormatter.format_json()

	SplunkSimpleXmlFormatter.format_xml()

	SplunkSimpleXmlFormatter.guess_indent()

	SplunkSimpleXmlFormatter.indent_tree()

	SplunkSimpleXmlFormatter.keep_tags

ksconf namespace

Subpackages

	ksconf.app package
	Submodules

	ksconf.app.deploy module
	DeployAction
	DeployAction.action

	DeployAction.from_dict()

	DeployAction.to_dict()

	DeployActionType
	DeployActionType.EXTRACT_FILE

	DeployActionType.REMOVE_FILE

	DeployActionType.SET_APP_NAME

	DeployActionType.SOURCE_REFERENCE

	DeployAction_ExtractFile
	DeployAction_ExtractFile.action

	DeployAction_ExtractFile.hash

	DeployAction_ExtractFile.mode

	DeployAction_ExtractFile.mtime

	DeployAction_ExtractFile.path

	DeployAction_ExtractFile.rel_path

	DeployAction_ExtractFile.subtype

	DeployAction_RemoveFile
	DeployAction_RemoveFile.action

	DeployAction_RemoveFile.path

	DeployAction_SetAppName
	DeployAction_SetAppName.action

	DeployAction_SetAppName.name

	DeployAction_SourceReference
	DeployAction_SourceReference.action

	DeployAction_SourceReference.archive_path

	DeployAction_SourceReference.hash

	DeployApply
	DeployApply.apply_sequence()

	DeployApply.resolve_source()

	DeployPlanner

	DeploySequence
	DeploySequence.add()

	DeploySequence.from_dict()

	DeploySequence.from_manifest()

	DeploySequence.from_manifest_transformation()

	DeploySequence.to_dict()

	expand_archive_by_manifest()

	get_deploy_action_class()

	ksconf.app.facts module
	AppFacts
	AppFacts.allows_disable

	AppFacts.author

	AppFacts.build

	AppFacts.check_for_updates

	AppFacts.deployer_lookups_push_mode

	AppFacts.deployer_push_mode

	AppFacts.description

	AppFacts.from_app_dir()

	AppFacts.from_archive()

	AppFacts.from_conf()

	AppFacts.id

	AppFacts.install_source_checksum

	AppFacts.install_source_local_checksum

	AppFacts.is_configured

	AppFacts.is_visible

	AppFacts.label

	AppFacts.name

	AppFacts.state

	AppFacts.state_change_requires_restart

	AppFacts.to_dict()

	AppFacts.to_tiny_dict()

	AppFacts.version

	ksconf.app.manifest module
	AppArchiveContentError

	AppArchiveError

	AppManifest
	AppManifest.check_paths()

	AppManifest.files

	AppManifest.find_local()

	AppManifest.from_archive()

	AppManifest.from_dict()

	AppManifest.from_filesystem()

	AppManifest.hash

	AppManifest.hash_algorithm

	AppManifest.name

	AppManifest.recalculate_hash()

	AppManifest.source

	AppManifest.to_dict()

	AppManifestFile
	AppManifestFile.content_match()

	AppManifestFile.from_dict()

	AppManifestFile.hash

	AppManifestFile.mode

	AppManifestFile.path

	AppManifestFile.size

	AppManifestFile.to_dict()

	AppManifestStorageError

	AppManifestStorageInvalid

	StoredArchiveManifest
	StoredArchiveManifest.archive

	StoredArchiveManifest.from_dict()

	StoredArchiveManifest.from_file()

	StoredArchiveManifest.from_json_manifest()

	StoredArchiveManifest.hash

	StoredArchiveManifest.manifest

	StoredArchiveManifest.mtime

	StoredArchiveManifest.read_json_manifest()

	StoredArchiveManifest.size

	StoredArchiveManifest.to_dict()

	StoredArchiveManifest.write_json_manifest()

	create_manifest_from_archive()

	get_stored_manifest_name()

	load_manifest_for_archive()

	Module contents
	get_facts_manifest_from_archive()

	ksconf.builder package
	Submodules

	ksconf.builder.cache module
	CachedRun
	CachedRun.STATE_DISABLED

	CachedRun.STATE_EXISTS

	CachedRun.STATE_NEW

	CachedRun.STATE_TAINT

	CachedRun.cache_dir

	CachedRun.cached_inputs

	CachedRun.cached_outputs

	CachedRun.config_file

	CachedRun.disable()

	CachedRun.dump()

	CachedRun.exists

	CachedRun.inputs_identical()

	CachedRun.is_disabled

	CachedRun.is_expired

	CachedRun.is_new

	CachedRun.load()

	CachedRun.rename()

	CachedRun.root

	CachedRun.set_cache_info()

	CachedRun.set_settings()

	CachedRun.taint()

	FileSet
	FileSet.add_file()

	FileSet.add_glob()

	FileSet.copy_all()

	FileSet.files

	FileSet.files_meta

	FileSet.from_cache()

	FileSet.from_filesystem()

	FileSet.get_fingerprint

	fingerprint_hash()

	fingerprint_stat()

	ksconf.builder.core module
	BuildManager
	BuildManager.cache()

	BuildManager.disable_cache()

	BuildManager.get_build_step()

	BuildManager.get_cache_info()

	BuildManager.is_folders_set()

	BuildManager.set_folders()

	BuildManager.taint_cache()

	ksconf.builder.steps module
	clean_build()

	copy_files()

	pip_install()

	Module contents
	BuildCacheException

	BuildExternalException

	BuildStep
	BuildStep.alternate_path()

	BuildStep.build_path

	BuildStep.config

	BuildStep.dist_path

	BuildStep.get_logger()

	BuildStep.is_quiet

	BuildStep.is_verbose()

	BuildStep.run()

	BuildStep.run_ksconf()

	BuildStep.source_path

	BuildStep.verbosity

	default_cli()

	ksconf.commands namespace
	Submodules

	ksconf.commands.attr module
	AttrGetCmd
	AttrGetCmd.description

	AttrGetCmd.format

	AttrGetCmd.help

	AttrGetCmd.maturity

	AttrGetCmd.pre_run()

	AttrGetCmd.register_args()

	AttrGetCmd.run()

	AttrSetCmd
	AttrSetCmd.description

	AttrSetCmd.format

	AttrSetCmd.get_value()

	AttrSetCmd.help

	AttrSetCmd.maturity

	AttrSetCmd.register_args()

	AttrSetCmd.run()

	AttrSetCmd.set_conf_value()

	ksconf.commands.check module
	CheckCmd
	CheckCmd.description

	CheckCmd.help

	CheckCmd.maturity

	CheckCmd.pre_run()

	CheckCmd.register_args()

	CheckCmd.run()

	ksconf.commands.combine module
	CombineCmd
	CombineCmd.description

	CombineCmd.format

	CombineCmd.help

	CombineCmd.maturity

	CombineCmd.register_args()

	CombineCmd.run()

	LayerCombinerExceptionCode

	RepeatableCombiner
	RepeatableCombiner.post_combine()

	RepeatableCombiner.pre_combine_inventory()

	RepeatableCombiner.prepare_target_dir()

	ksconf.commands.diff module
	DiffCmd
	DiffCmd.description

	DiffCmd.format

	DiffCmd.help

	DiffCmd.maturity

	DiffCmd.register_args()

	DiffCmd.run()

	ksconf.commands.filter module
	FilterCmd
	FilterCmd.description

	FilterCmd.filter_attrs()

	FilterCmd.help

	FilterCmd.maturity

	FilterCmd.output()

	FilterCmd.prep_filters()

	FilterCmd.register_args()

	FilterCmd.run()

	is_disabled()

	ksconf.commands.merge module
	MergeCmd
	MergeCmd.description

	MergeCmd.help

	MergeCmd.maturity

	MergeCmd.pre_run()

	MergeCmd.register_args()

	MergeCmd.run()

	ksconf.commands.minimize module
	MinimizeCmd
	MinimizeCmd.description

	MinimizeCmd.help

	MinimizeCmd.maturity

	MinimizeCmd.register_args()

	MinimizeCmd.run()

	explode_default_stanza()

	ksconf.commands.package module
	PackageCmd
	PackageCmd.default_blocklist

	PackageCmd.description

	PackageCmd.help

	PackageCmd.load_blocklist()

	PackageCmd.maturity

	PackageCmd.pre_run()

	PackageCmd.register_args()

	PackageCmd.run()

	ksconf.commands.promote module
	PromoteCmd
	PromoteCmd.apply_filters()

	PromoteCmd.combine_stanza()

	PromoteCmd.description

	PromoteCmd.format

	PromoteCmd.help

	PromoteCmd.maturity

	PromoteCmd.prep_filters()

	PromoteCmd.register_args()

	PromoteCmd.run()

	empty_dict()

	ksconf.commands.restexport module
	CurlCommand
	CurlCommand.extend_args()

	CurlCommand.get_command()

	CurlCommand.quote()

	Literal

	RestExportCmd
	RestExportCmd.build_rest_url()

	RestExportCmd.description

	RestExportCmd.format

	RestExportCmd.help

	RestExportCmd.maturity

	RestExportCmd.register_args()

	RestExportCmd.run()

	ksconf.commands.restpublish module
	RestPublishCmd
	RestPublishCmd.connect_splunkd()

	RestPublishCmd.delete_conf()

	RestPublishCmd.description

	RestPublishCmd.handle_conf_file()

	RestPublishCmd.help

	RestPublishCmd.make_boolean()

	RestPublishCmd.maturity

	RestPublishCmd.publish_conf()

	RestPublishCmd.register_args()

	RestPublishCmd.run()

	ksconf.commands.snapshot module
	ConfSnapshot
	ConfSnapshot.schema_version

	ConfSnapshot.snapshot_dir()

	ConfSnapshot.snapshot_file_conf()

	ConfSnapshot.write_snapshot()

	ConfSnapshotConfig
	ConfSnapshotConfig.max_file_size

	SnapshotCmd
	SnapshotCmd.description

	SnapshotCmd.help

	SnapshotCmd.register_args()

	SnapshotCmd.run()

	ksconf.commands.sort module
	SortCmd
	SortCmd.description

	SortCmd.format

	SortCmd.help

	SortCmd.maturity

	SortCmd.pre_run()

	SortCmd.register_args()

	SortCmd.run()

	ksconf.commands.unarchive module
	UnarchiveCmd
	UnarchiveCmd.description

	UnarchiveCmd.format

	UnarchiveCmd.help

	UnarchiveCmd.maturity

	UnarchiveCmd.register_args()

	UnarchiveCmd.run()

	ksconf.commands.xmlformat module
	XmlFormatCmd
	XmlFormatCmd.description

	XmlFormatCmd.help

	XmlFormatCmd.maturity

	XmlFormatCmd.pre_commit_repo_migration_warning()

	XmlFormatCmd.register_args()

	XmlFormatCmd.run()

	ksconf.conf package
	Submodules

	ksconf.conf.delta module
	DiffGlobal
	DiffGlobal.type

	DiffHeader
	DiffHeader.detect_mtime()

	DiffHeader.mtime

	DiffHeader.name

	DiffLevel
	DiffLevel.GLOBAL

	DiffLevel.KEY

	DiffLevel.STANZA

	DiffOp
	DiffOp.a

	DiffOp.b

	DiffOp.location

	DiffOp.tag

	DiffStanza
	DiffStanza.stanza

	DiffStanza.type

	DiffStzKey
	DiffStzKey.key

	DiffStzKey.stanza

	DiffStzKey.type

	DiffVerb
	DiffVerb.DELETE

	DiffVerb.EQUAL

	DiffVerb.INSERT

	DiffVerb.REPLACE

	compare_cfgs()

	compare_stanzas()

	diff_obj_json_format()

	is_equal()

	reduce_stanza()

	show_diff()

	show_text_diff()

	summarize_cfg_diffs()

	write_diff_as_json()

	ksconf.conf.merge module
	merge_app_local()

	merge_conf_dicts()

	merge_conf_files()

	merge_update_any_file()

	merge_update_conf_file()

	ksconf.conf.meta module
	MetaData
	MetaData.expand_layers()

	MetaData.feed_conf()

	MetaData.feed_file()

	MetaData.get()

	MetaData.get_layer()

	MetaData.iter_raw()

	MetaData.parse_meta()

	MetaData.regex_access

	MetaData.walk()

	MetaData.write_stream()

	MetaLayer
	MetaLayer.data

	MetaLayer.items()

	MetaLayer.resolve()

	MetaLayer.update()

	MetaLayer.walk()

	ksconf.conf.parser module
	ConfParserException

	DuplicateEnum
	DuplicateEnum.EXCEPTION

	DuplicateEnum.MERGE

	DuplicateEnum.OVERWRITE

	DuplicateKeyException

	DuplicateStanzaException

	Token

	conf_attr_boolean()

	cont_handler()

	detect_by_bom()

	inject_section_comments()

	parse_conf()

	parse_conf_stream()

	parse_string()

	section_reader()

	smart_write_conf()

	splitup_kvpairs()

	update_conf
	update_conf.cancel()

	update_conf.keys()

	update_conf.update()

	write_conf()

	write_conf_stream()

	Module contents

	ksconf.util package
	Submodules

	ksconf.util.compare module
	cmp_sets()

	file_compare()

	fileobj_compare()

	ksconf.util.completers module
	DirectoriesCompleter()

	FilesCompleter()

	autocomplete()

	ksconf.util.file module
	ReluctantWriter

	atomic_open()

	atomic_writer()

	dir_exists()

	expand_glob_list()

	file_fingerprint()

	file_hash()

	relwalk()

	secure_delete()

	smart_copy()

	splglob_simple()

	splglob_to_regex()

	ksconf.util.rest module
	build_rest_namespace()

	build_rest_url()

	ksconf.util.terminal module
	TermColor
	TermColor.color()

	TermColor.reset()

	TermColor.write()

	Module contents
	debug_traceback()

	decorator_with_opt_kwargs()

	ksconf.vc package
	Submodules

	ksconf.vc.git module
	GitCmdOutput
	GitCmdOutput.cmd

	GitCmdOutput.lines

	GitCmdOutput.returncode

	GitCmdOutput.stderr

	GitCmdOutput.stdout

	GitNotAvailable

	git_cmd()

	git_cmd_iterable()

	git_is_clean()

	git_is_working_tree()

	git_ls_files()

	git_status_summary()

	git_status_ui()

	git_version()

	Module contents

Submodules

ksconf.archive module

	
class ksconf.archive.GenArchFile(path, mode, size, payload)

	Bases: NamedTuple

	
mode: int

	Alias for field number 1

	
path: str

	Alias for field number 0

	
payload: bytes | None

	Alias for field number 3

	
size: int

	Alias for field number 2

	
ksconf.archive.extract_archive(archive_name, extract_filter: callable = None) → Iterable[GenArchFile]

	

	
ksconf.archive.gaf_filter_name_like(pattern)

	

	
ksconf.archive.gen_arch_file_remapper(iterable: Iterable[GenArchFile], mapping: Sequence[Tuple[str, str]]) → Iterable[GenArchFile]

	

	
ksconf.archive.sanity_checker(iterable: Iterable[GenArchFile]) → Iterable[GenArchFile]

	

ksconf.cli module

KSCONF - Ksconf Splunk CONFig tool

Optionally supports argcomplete for commandline argument (tab) completion.

Install & register with:

pip install argcomplete
activate-global-python-argcomplete (in ~/.bashrc)

	
ksconf.cli.build_cli_parser(do_formatter=False)

	

	
ksconf.cli.check_py()

	

	
ksconf.cli.check_py_sane()

	Run a simple python environment sanity check. Here’s the scenario, if Splunk’s
python is called but not all the correct environment variables have been set, then ksconf can
fail in unclear ways.

	
ksconf.cli.cli(argv=None, _unittest=False)

	

	
ksconf.cli.handle_cmd_failed(subparser, ep)

	Build a bogus subparser for a cmd that can’t be loaded, with the only purpose of providing
a more consistent user experience.

ksconf.combine module

	
class ksconf.combine.LayerCombiner(follow_symlink: bool = False, banner: str = '', dry_run: bool = False, quiet: bool = False)

	Bases: object

Class to recursively combine layers (directories) into a single rendered output target directory.
This is heavily used by the ksconf combine command as well as by the package command.

Typical class use case:

	::
	lc = LayerCombiner()

	# Setup source, either
	
	lc.set_source_dirs() OR

	lc.set_layer_root()

Call hierarch:

lc.combine() Entry point
 -> prepare() Directory, layer prep
 -> prepare_target_dir() Make dir; subclass handles marker here (combine CLI)
 -> pre_combine_inventory() Hook for pre-processing (or alerting) the set of files to combine
 -> combine_files() Main worker function
 -> post_combine() Optional, cleanup leftover files

	
add_layer_filter(action, pattern)

	

	
combine(target: Path, *, hook_label='')

	Combine layers into target directory.
Any hook_label given will be passed to the plugin system via the
usage field.

	
combine_files(target: Path, src_files: list[LayerFile])

	

	
conf_file_re = re.compile('([a-z_-]+\\.conf|(default|local)\\.meta)$')

	

	
debug(message)

	

	
filetype_handlers: list[tuple[Callable, Callable]] = [(<function LayerCombiner.register_handler.<locals>.match_f>, <function handle_merge_conf_files>), (<function LayerCombiner.register_handler.<locals>.match_f>, <function handle_spec_concatenate>)]

	

	
log(message)

	

	
post_combine(target)

	Hook point for post-processing after all copy/merge operations have been completed.

	
pre_combine_inventory(target: Path, src_files: list[LayerFile]) → list[LayerFile]

	Hook point for pre-processing before any files are copied/merged

	
prepare(target: Path)

	Start the combine process. This includes directory checking,
applying layer filtering, and marker file handling.

	
prepare_target_dir(target: Path)

	Hook to ensure destination directory is ready for use. This can be overridden
to adder marker file handling for use cases that need it (e.g., the ‘combine’ command)

	
classmethod register_handler(regex_match)

	Decorator that registers a new file type handler. The handler is
used if a file name matches a regex. Regex ‘search’ mode is used.

	
set_layer_root(root: Layer)

	

	
set_source_dirs(sources: list[Path])

	

	
spec_file_re = re.compile('\\.conf\\.spec$')

	

	
exception ksconf.combine.LayerCombinerException

	Bases: Exception

	
ksconf.combine.handle_merge_conf_files(combiner: LayerCombiner, dest_path: Path, sources: list[LayerFile], dry_run)

	Handle merging two or more .conf files.

	
ksconf.combine.handle_spec_concatenate(combiner: LayerCombiner, dest_path: Path, sources: list[LayerFile], dry_run)

	Concatenate multiple .spec files. Likely a README.d situation.

	
ksconf.combine.register_handler(regex_match)

	Decorator that registers a new file type handler. The handler is
used if a file name matches a regex. Regex ‘search’ mode is used.

ksconf.command module

ksconf.command:

Helpers functions and classes in support of the actual commands that live under
ksconf.commands.*.

Note that ksconf.commands is a namespace package, which can be contributed
to by multiple python packages (technically called “distributions”). Because of
this, there can be no __init__.py, which is where this content logically belongs.

	
class ksconf.command.ConfFileType(mode='r', action='open', parse_profile: Dict = None, accept_dir: bool = False)

	Bases: object

Factory for creating conf file object types; returns a lazy-loader ConfFile proxy class

Started from FileType() and then changed everything. With our use case, it’s often
necessary to delay writing, or read before writing to a conf file (depending on whether or not
–dry-run mode is enabled, for example.)

Instances of FileType are typically passed as type= arguments to the
ArgumentParser add_argument() method.

	Parameters:

	
	mode (str) – How the file is to be opened. Accepts “r”, “w”, and “r+”.

	action (str) – Determine how much work should be handled during argument parsing vs handed off
to the caller. Supports ‘none’, ‘open’, ‘load’. Full descriptions below.

	parse_profile – parsing configuration settings passed along to the parser

	accept_dir (bool) – Should the CLI accept a directory of config files instead of an
individual file. Defaults to False.

Values for action

	Action

	Description

	none

	No preparation or testing is done on the filename.

	open

	Ensure the file exists and can be opened.

	load

	Ensure the file can be opened and parsed successfully.

Once invoked, instances of this class will return a ConfFileProxy object, or a
ConfDirProxy object if a directory is passed in via the CLI.

	
class ksconf.command.KsconfCmd(name)

	Bases: object

Ksconf command specification base class.

	
add_parser(subparser)

	

	
description = None

	

	
exit(exit_code)

	Allow overriding for unittesting or other high-level functionality, like an
interactive interface.

	
format = 'default'

	

	
help = None

	

	
launch(args)

	Handle flow control between pre_run() / run() / post_run()

	
maturity = 'alpha'

	

	
parse_conf(path: str, mode: str = 'r', profile: Dict = None, raw_exec: bool = False) → ConfFileProxy

	

	
parse_extra_vars(vars: str, arg_name='argument') → dict

	Argument can be either a string, or a @file

	
post_run(args, exec_info=None)

	Optional custom clean up method.
Always called if run() was. The presence of exc_info indicates failure.

	
pre_run(args)

	Optional pre-run hook.
Any exceptions or non-0 return code, will prevent run()/post_run() from being called.

	
register_args(parser: ArgumentParser)

	This function in passed the

	
run(args)

	Actual works happens here. Return code should be an EXIT_CODE_* from consts.

	
version_extra = None

	

	
ksconf.command.add_splunkd_access_args(parser: ArgumentParser) → ArgumentParser

	

	
ksconf.command.add_splunkd_namespace(parser: ArgumentParser) → ArgumentParser

	

	
ksconf.command.dedent(text)

	Remove any common leading whitespace from every line in text.

This can be used to make triple-quoted strings line up with the left
edge of the display, while still presenting them in the source code
in indented form.

Note that tabs and spaces are both treated as whitespace, but they
are not equal: the lines ” hello” and “thello” are
considered to have no common leading whitespace.

Entirely blank lines are normalized to a newline character.

	
ksconf.command.get_all_ksconf_cmds(on_error='warn')

	

	
ksconf.command.get_entrypoints(group, name=None)

	

ksconf.compat module

Silly simple Python version compatibility items

	
ksconf.compat.Dict

	alias of dict

	
ksconf.compat.List

	alias of list

	
ksconf.compat.Set

	alias of set

	
ksconf.compat.Tuple

	alias of tuple

	
ksconf.compat.cache(user_function, /)

	Simple lightweight unbounded cache. Sometimes called “memoize”.

ksconf.consts module

	
class ksconf.consts.SmartEnum(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: Enum

	
CREATE = 'created'

	

	
NOCHANGE = 'unchanged'

	

	
UPDATE = 'updated'

	

	
ksconf.consts.is_debug()

	

ksconf.filter module

	
class ksconf.filter.FilteredList(flags=0, default=True)

	Bases: object

	
IGNORECASE = 1

	

	
INVERT = 2

	

	
VERBOSE = 4

	

	
feed(item, filter=None)

	

	
feedall(iterable, filter=None)

	

	
property has_rules

	

	
match(item)

	

	
match_path(path)

	

	
match_stanza(stanza)

	Same as match(), but handle GLOBAL_STANZA gracefully.

	
reset_counters()

	

	
class ksconf.filter.FilteredListRegex(flags=0, default=True)

	Bases: FilteredList

Regular Expression support

	
calc_regex_flags()

	

	
reset_counters()

	

	
class ksconf.filter.FilteredListSplunkGlob(flags=0, default=True)

	Bases: FilteredListRegex

Classic wildcard support (‘*’ and ?’) plus ‘…’ or ‘**’ for multiple-path components with
some (non-advertised) pass-through regex behavior

	
class ksconf.filter.FilteredListString(flags=0, default=True)

	Bases: FilteredList

Handle simple string comparisons

	
reset_counters()

	

	
class ksconf.filter.FilteredListWildcard(flags=0, default=True)

	Bases: FilteredListRegex

Wildcard support (handling ‘*’ and ?’)
Technically fnmatch also supports [] and [!] character ranges, but we don’t advertise that

	
ksconf.filter.create_filtered_list(match_mode: str, flags=0, default=True) → FilteredList

	

ksconf.hook module

	
exception ksconf.hook.BadPluginWarning

	Bases: UserWarning

Issue with one or more plugins

	
ksconf.hook.get_plugin_manager() → _plugin_manager

	Return the shared pluggy PluginManager (singleton) instance.

This is for backwards compatibility. This was only added in v0.11.6; and replaced immediately after.

ksconf.hookspec module

This module contains all the plugin definitions (or hook “specifications”) for various customization
or integration points with ksconf. Not all of these have been fully tested so please let us know if
something is not working as expected, or if additional arguments are needed.

See ksconf plugins [https://pypi.org/search/?q=ksconf&o=&c=Environment+%3A%3A+Plugins] on pypi
for a list of currently available plugins.

	
class ksconf.hookspec.KsconfHookSpecs(*args, **kwargs)

	Bases: Protocol

Ksconf plugin specifications for all known supported functions.

Grouping these functions together in a single class allows for type support
it supports typing. This adds a level of validation to the code base where
a hook is invoked via plugin_manger.hook.<hook_name>().

If you are implementing one of these hooks, please note that you can simple
make top-level function, no need to implement a class.

	
static ksconf_cli_init()

	Simple hook that is run before CLI initialization. This can be use to
modify the runtime environment.

This can be used to register additional handlers, such as:

	ksconf.combine.register_handler() - Add a combination file handler.
File types are limited to pattern matching.

	ksconf.layer.register_file_handler() - Add file handlers for
layer processing for template processing

	
static ksconf_cli_modify_argparse(parser: Any, name: str)

	Manipulate argparse rules. This could be used to add additional CLI
options for other hook-added features added features

Note that this hook is called for both the top-level argparse instance
as well as each subparser. The name argument should be
inspected to determine if the parse instances is the parent (top-level)
parser, or some other named subcommands.

	
static ksconf_cli_process_args(args: Any)

	Hook to capture all parsed arguments, includes any custom arguments
added to the CLI via the the ksconf_cli_modify_argparse() hook.
args can be mutated directly, if needed.

	
static modify_jinja_env(env: Any)

	Modify the Jinja2 environment object. This can be used to add custom
filters or tests, for example.

Invoked by LayerFile_Jinja2 immediately after
initial Environment creation. env should be mutated in place.

	
static package_pre_archive(app_dir: Path, app_name: str)

	Modify, inventory, or test the contents of an app before the final
packaging commands. This can be triggered from the ksconf package
command or via the API.

During a ksconf package process, this hook executes right before
the final archive is created. All local merging, app version or build
updates, and so on are completed before this hook is executed.

From an API perspective, this hook is called from
ksconf.package.AppPackager whenever a content freeze occurs,
which is typically when
make_archive() or
make_manifest() is invoked.

	
static post_combine(target: Path, usage: str)

	Trigger a custom action after a layer combining operation. This is used
by multiple ksconf subcommands and the API.

This trigger could be used to modify the file system, trigger external
operations, track/audit behaviors, and so on.

When using CLI commands, usage should be either “combine” or
“package” depending on which ksconf command was invoked.
Direct invocation of LayerCombiner can pass
along a custom usage label and avoid impacting CLI, when desirable.

If your goal is to only trigger an action during the app packaging
process, also consider the package_pre_archive() hook, which
may be more appropriate.

ksconf.layer module

	
class ksconf.layer.DirectLayerRoot(context: LayerContext = None)

	Bases: LayerRootBase

A very simple direct LayerRoot implementation that relies on all layer paths to be explicitly
given without any automatic detection mechanisms. You can think of this as the legacy
implementation.

	
add_layer(path: Path)

	

	
order_layers()

	

	
class ksconf.layer.DotDLayerRoot(context=None)

	Bases: LayerRootBase

	
class Layer(name: str, root: Path, physical: PurePath, logical: PurePath, context: LayerContext, file_factory: Callable, prune_points: set[Path] = None)

	Bases: Layer

	
prune_points: set[Path]

	

	
walk() → Iterator[tuple[Path, list[str], list[str]]]

	

	
apply_filter(layer_filter: LayerFilter)

	Apply a destructive filter to all layers. layer_filter(layer) will be called one for each
layer, if the filter returns True than the layer is kept. Root layers are always kept.

Returns True if layers were removed

	
layer_regex = re.compile('(?P<layer>\\d\\d-[\\w_.-]+)')

	

	
list_layers() → List[Layer]

	

	
mount_regex = re.compile('(?P<realname>[\\w_.-]+)\\.d$')

	

	
order_layers()

	

	
set_root(root: Path, follow_symlinks=None)

	Set a root path, and auto discover all ‘.d’ directories.

Note: We currently only support .d/<layer> directories, a file like
default.d/10-props.conf won’t be handled here.
A valid name would be default.d/10-name/props.conf.

	
class ksconf.layer.FileFactory

	Bases: object

	
disable(name)

	

	
enable(name, _enabled=True)

	

	
list_available_handlers() → list[str]

	

	
register_handler(name: str, **kwargs)

	

	
class ksconf.layer.LayerContext(follow_symlink: 'bool' = False, block_files: 'Match' = re.compile('\\.(bak|swp)$'), block_dirs: 'set' = <factory>, template_variables: 'dict' = <factory>)

	Bases: object

	
block_dirs: set

	

	
block_files: Match = re.compile('\\.(bak|swp)$')

	

	
follow_symlink: bool = False

	

	
template_variables: dict

	

	
exception ksconf.layer.LayerException

	Bases: Exception

	
class ksconf.layer.LayerFile(layer: Layer, relative_path: PurePath, stat: stat_result = None)

	Bases: PathLike

Abstraction of a file within a Layer

Path definitions

	logical_path
	Conceptual file path. This is the final path after all layers are resolved.
Think of this as the ‘destination’ file.

	physical_path
	Actual file path. The location of the physical file found within a source layer.
Most of the time this is the ‘source’ file, however this doesn’t take into considerations layer combining or
template expansion requirements. (In the case of a template, this would be the template file)

	resource_path
	Content location. Often this the physical_path, but in the case of abstracted layers
(like templates, or archived layers), this would be the location of a temporary resource that contains
the expanded/rendered content.

	
layer

	

	
property logical_path: Path

	

	
static match(path: PurePath)

	

	
property mtime

	

	
property physical_path: Path

	

	
relative_path

	

	
property resource_path: Path

	

	
property size

	

	
property stat: stat_result

	

	
class ksconf.layer.LayerFile_Jinja2(*args, **kwargs)

	Bases: LayerRenderedFile

	
property jinja2_env

	

	
static match(path: PurePath)

	

	
render(template_path: Path) → str

	

	
static transform_name(path: PurePath)

	

	
class ksconf.layer.LayerFilter

	Bases: object

	
add_rule(action, pattern)

	

	
evaluate(layer: Layer) → bool

	

	
class ksconf.layer.LayerRenderedFile(*args, **kwargs)

	Bases: LayerFile

Abstract LayerFile for rendered scenarios, such as template scenarios.
A subclass really only needs to implement match() render()

	
property logical_path: Path

	

	
property physical_path: Path

	

	
render(template_path: Path) → str

	

	
property resource_path: Path

	

	
static transform_name(path: PurePath)

	

	
use_secure_delete = False

	

	
class ksconf.layer.LayerRootBase(context: LayerContext = None)

	Bases: object

All ‘path’s here are relative to the ROOT.

	
class Layer(name: str, root: Path, physical: PurePath, logical: PurePath, context: LayerContext, file_factory: Callable)

	Bases: object

Basic layer Container: Connects logical and physical paths.

	
context

	

	
get_file(path: Path) → LayerFile

	Return file object (by logical path), if it exists in this layer.

	
iter_files() → Iterator[LayerFile]

	

	
list_files() → list[LayerFile]

	

	
logical_path

	

	
name

	

	
physical_path

	

	
root

	

	
walk() → Iterator[tuple[Path, list[str], list[str]]]

	

	
add_layer(layer: Layer, do_sort=True)

	

	
apply_filter(layer_filter: LayerFilter) → bool

	Apply a destructive filter to all layers. layer_filter(layer) will be called one for each
layer, if the filter returns True than the layer is kept. Root layers are always kept.

Returns True if layers were removed

	
get_file(path) → Iterator[LayerFile]

	return all layers associated with the given relative path.

	
get_layers_by_name(name: str) → Iterator[Layer]

	

	
iter_all_files() → Iterator[LayerFile]

	Iterator over all physical files.

	
list_files() → list[LayerFile]

	Return a list of logical paths.

	
list_layer_names() → list[str]

	

	
list_layers() → List[Layer]

	

	
list_logical_files() → list[LayerFile]

	Return a list of logical paths.

	
list_physical_files() → list[LayerFile]

	

	
order_layers()

	

	
exception ksconf.layer.LayerUsageException

	Bases: LayerException

	
ksconf.layer.register_file_handler(name: str, **kwargs)

	

ksconf.package module

	
class ksconf.package.AppPackager(src_path, app_name: str, output: TextIO, template_variables: dict = None, predictable_mtime: bool = True)

	Bases: object

	
block_local(report=True)

	

	
blocklist(patterns)

	

	
check()

	Run safety checks prior to building archive:

	Set app name based on app.conf [package] id, if set. Otherwise confirm that the package
id and top-level folder names align.

	Check for files or directories starting with ., makes AppInspect very grumpy!

	
cleanup()

	

	
combine(src, filters, layer_method='dir.d', allow_symlink=False)

	

	
expand_new_only(value: str) → str | None

	Expand a variable but return False if no substitution occurred

	Parameters:

	value (str) – String that may contain {{variable}} substitution.

	Returns:

	Expanded value if variables were expanded, else False

	Return type:

	str

	
expand_var(value: str) → str

	Expand a variable, if present

	Parameters:

	value (str) – String that main contain {{variable}} substitution.

	Returns:

	Expanded value

	Return type:

	str

	
freeze(caller_name)

	Initiate a content freeze by restricting mutable methods.
The “package_pre_archive” hook is invoked before freeze operation.
Such hooks may choose to mutate the filesystem at app_dir, the only
assumption is that all work is done before the hook returns.

Freeze can be safely called multiple times. caller_name is simply a
label used in an exception message if the programmer screwed up.

	
make_archive(filename, temp_suffix: str = '.tmp')

	Create a compressed tarball of the build directory.

	
make_manifest(calculate_hash=True) → AppManifest

	Create a manifest of the app’s contents.

	
merge_local()

	Find everything in local, if it has a corresponding file in default, merge.

	
require_active_context(mutable=True)

	Decorator to mark member functions that cannot be used until the
context manager has been activated.

	
update_app_conf(version: str = None, build: str = None)

	Update version and/or build in apps.conf

	
class ksconf.package.AppVarMagic(src_dir, build_dir, meta=None)

	Bases: object

A lazy loading dict-like object to fetch things like app version and such on demand.

	
expand(value: str) → str

	A simple Jinja2 like {{VAR}} substitution mechanism.

	
get_app_id()

	Splunk app package id from app.conf

	
get_build()

	Splunk app build fetched from app.conf

	
get_git_head()

	Git HEAD rev abbreviated

	
get_git_last_rev()

	Git abbreviated rev of the last change of the app. This may not be the same as HEAD.

	
get_git_tag()

	Git version tag using the git describe --tags command

	
get_layers_hash()

	Build a unique hash representing the combination of ksconf layers used.

	
get_layers_list()

	List of ksconf layers used.

	
get_version()

	Splunk app version fetched from app.conf

	
git_single_line(*args)

	

	
list_vars()

	Return a list of (variable, description) available in this class.

	
exception ksconf.package.AppVarMagicException

	Bases: KeyError

	
exception ksconf.package.PackagingException

	Bases: Exception

	
ksconf.package.find_conf_in_layers(app_dir, conf, *layers)

	

	
ksconf.package.get_merged_conf(app_dir, conf, *layers)

	

	
ksconf.package.normalize_directory_mtime(path)

	Walk a tree and update the directory modification times to match the
newest time of the children. This results in a more predictable behavior
over multiple executions.

ksconf.setup_entrypoints module

Defines all command prompt entry points for CLI actions

	This is a silly hack allows for fallback mechanism when
	
	running unit tests (can happen before install)

	unexpected issues with importlib.metadata or backport

	
class ksconf.setup_entrypoints.Ep(name, module_name, object_name)

	Bases: NamedTuple

	
property formatted

	

	
module_name: str

	Alias for field number 1

	
name: str

	Alias for field number 0

	
object_name: str

	Alias for field number 2

	
class ksconf.setup_entrypoints.LocalEntryPoint(data)

	Bases: object

Bare minimum stand-in for entrypoints.EntryPoint

	
load()

	

	
ksconf.setup_entrypoints.debug()

	

	
ksconf.setup_entrypoints.get_entrypoints_fallback(group)

	

	
ksconf.setup_entrypoints.get_entrypoints_setup()

	Build entry point text descriptions for ksconf packaging

ksconf.xmlformat module

	
class ksconf.xmlformat.FileReadlinesCache

	Bases: object

Silly workaround for CDATA detection…

	
static convert_filename(filename)

	

	
readlines(filename)

	

	
class ksconf.xmlformat.SplunkSimpleXmlFormatter

	Bases: object

	
static cdata_tags(elem: Any, tags: List[str])

	Expand text to CDATA, if it isn’t already.

	
classmethod expand_tags(elem: Any, tags: set)

	Keep <elem></elem> instead of shortening to <elem/>

	
classmethod format_json(elem: Any, indent=2)

	Format JSON data within a Dashboard Studio dashboard. This is
still pretty limited (for example, long searches still show up on a
single line), but this give you at least a fighting change to figure
out what’s different.

	
classmethod format_xml(src, dest, default_indent=2)

	

	
static guess_indent(elem: Any, default=2)

	

	
classmethod indent_tree(elem: Any, level=0, indent=2)

	

	
keep_tags = {'default', 'earliest', 'fieldset', 'label', 'latest', 'option', 'search', 'set'}

	

ksconf.app package

Submodules

ksconf.app.deploy module

	
class ksconf.app.deploy.DeployAction(action: 'str')

	Bases: object

	
action: str

	

	
classmethod from_dict(data: dict) → DeployAction

	

	
to_dict() → dict

	

	
class ksconf.app.deploy.DeployActionType(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: Enum

	
EXTRACT_FILE = 'extract_file'

	

	
REMOVE_FILE = 'remove'

	Implement in future phase
SET_SYMLINK = “link”
UPDATE_META = “meta”

	
SET_APP_NAME = 'app'

	

	
SOURCE_REFERENCE = 'source'

	

	
class ksconf.app.deploy.DeployAction_ExtractFile(subtype: 'str', path: 'PurePosixPath', mode: 'int' = None, mtime: 'int' = None, hash: 'str' = None, rel_path: 'str' = None)

	Bases: DeployAction

	
action: str = 'extract_file'

	

	
hash: str = None

	

	
mode: int = None

	

	
mtime: int = None

	

	
path: PurePosixPath

	

	
rel_path: str = None

	

	
subtype: str

	

	
class ksconf.app.deploy.DeployAction_RemoveFile(path: 'PurePosixPath')

	Bases: DeployAction

	
action: str = 'remove'

	

	
path: PurePosixPath

	

	
class ksconf.app.deploy.DeployAction_SetAppName(name: 'str')

	Bases: DeployAction

	
action: str = 'app'

	

	
name: str

	

	
class ksconf.app.deploy.DeployAction_SourceReference(archive_path: 'str', hash: 'str')

	Bases: DeployAction

	
action: str = 'source'

	

	
archive_path: str

	

	
hash: str

	

	
class ksconf.app.deploy.DeployApply(dest: Path)

	Bases: object

	
apply_sequence(deployment_sequence: DeploySequence)

	Apply a pre-calculated deployment sequence to the local file system.

Note that we implicitly trust paths contained within deployment_sequence
as all constructors run the check_paths() method on all input manifests.
Deployment sequences are created locally and never persisted or transmitted.

	
resolve_source(source, hash)

	

	
class ksconf.app.deploy.DeployPlanner

	Bases: object

	
class ksconf.app.deploy.DeploySequence

	Bases: object

	
add(action: str, *args, **kwargs)

	

	
classmethod from_dict(data: dict) → DeploySequence

	

	
classmethod from_manifest(manifest: AppManifest) → DeploySequence

	Fresh deploy of an app from scratch.

(There should probably be a new
op-code for this, eventually instead of listing every single file.)

	
classmethod from_manifest_transformation(base: AppManifest, target: AppManifest) → DeploySequence

	

	
to_dict() → dict

	

	
ksconf.app.deploy.expand_archive_by_manifest(archive: Path, dest: Path, manifest: AppManifest, dir_mode=504)

	Expand an tarball to a local file system including only the files referenced
by the files within the app manifest.

This function assumes that safety checks on manifest have already been
performed, such as eliminating any absolute paths.

	
ksconf.app.deploy.get_deploy_action_class(action: str) → DeployAction

	

ksconf.app.facts module

Splunk Application facts:

Easily collect Splunk app name, version, label, and other nuggets from app.conf

	
class ksconf.app.facts.AppFacts(name: str, label: str = None, id: str = None, version: str = None, author: str = None, description: str = None, state: str = None, build: int = None)

	Bases: object

Basic Splunk application info container.
A majority of these facts are extracted from app.conf

	
allows_disable: bool = None

	

	
author: str = None

	

	
build: int = None

	

	
check_for_updates: bool = None

	

	
deployer_lookups_push_mode: str = None

	

	
deployer_push_mode: str = None

	

	
description: str = None

	

	
classmethod from_app_dir(app_path: Path) → AppFacts

	Create an AppFacts from a local file system. This expects a standard
(non-layered) installed or extracted app folder. Both default and
local are considered.

	
classmethod from_archive(archive: Path)

	Returns list of app names, merged app_conf and a dictionary of extra facts that may be useful

	
classmethod from_conf(name, conf: Dict[str, Dict[str, str]]) → AppFacts

	Create AppFacts from an app.conf configuration content.

	
id: str = None

	

	
install_source_checksum: str = None

	

	
install_source_local_checksum: str = None

	

	
is_configured: bool = None

	

	
is_visible: bool = None

	

	
label: str = None

	

	
name: str

	

	
state: str = None

	

	
state_change_requires_restart: bool = None

	

	
to_dict() → dict

	

	
to_tiny_dict(*keep_attrs) → dict

	Return dict representation, discarding the Nones

	
version: str = None

	

ksconf.app.manifest module

Splunk App content inventory and signature management

	
exception ksconf.app.manifest.AppArchiveContentError

	Bases: Exception

Problem with the contents of an archive

	
exception ksconf.app.manifest.AppArchiveError

	Bases: Exception

	
class ksconf.app.manifest.AppManifest(name: 'str' = None, source: 'str' = None, hash_algorithm: 'str' = 'sha256', files: 'List[AppManifestFile]' = <factory>)

	Bases: object

	
check_paths()

	Check for dangerous paths in the archive.

	
files: list[AppManifestFile]

	

	
find_local() → Iterable[AppManifestFile]

	

	
classmethod from_archive(archive: Path, calculate_hash=True) → AppManifest

	Create as new AppManifest from a tarball. Set calculate_hash as
False when only a file listing is needed.

	
classmethod from_dict(data: dict) → AppManifest

	

	
classmethod from_filesystem(path: Path, name: str = None, follow_symlinks=False, calculate_hash=True) → AppManifest

	Create as new AppManifest from an existing directory structure.
Set calculate_hash as False when only a file listing is needed.

	
property hash

	

	
hash_algorithm: str = 'sha256'

	

	
name: str = None

	

	
recalculate_hash() → bool

	Recalculate hash and indicate if hash has changed.

	
source: str = None

	

	
to_dict()

	

	
class ksconf.app.manifest.AppManifestFile(path: 'PurePosixPath', mode: 'int', size: 'int', hash: 'str' = None)

	Bases: object

	
content_match(other)

	

	
classmethod from_dict(data: dict) → AppManifestFile

	

	
hash: str = None

	

	
mode: int

	

	
path: PurePosixPath

	

	
size: int

	

	
to_dict()

	

	
exception ksconf.app.manifest.AppManifestStorageError

	Bases: Exception

	
exception ksconf.app.manifest.AppManifestStorageInvalid

	Bases: AppManifestStorageError

	
class ksconf.app.manifest.StoredArchiveManifest(archive: Path, size: int, mtime: float, hash: str)

	Bases: object

Stored manifest for a tarball. Typically the manifest file lives in the
same directory as the archive. Details around the naming, storage, and
clean up of these persistent manifest files are managed by the caller.

	
archive: Path

	

	
classmethod from_dict(data: dict) → StoredArchiveManifest

	

	
classmethod from_file(archive: Path, manifest: AppManifest) → StoredArchiveManifest

	Construct instance from a tarball.

	
classmethod from_json_manifest(archive: Path, stored_file: Path, *, permanent_archive: Path = None) → StoredArchiveManifest

	Attempt to load an archive stored manifest from archive and stored_file paths.
If the archive has changed since the manifest was stored, then an
exception will be raised indicating the reason for invalidation.

	
hash: str

	

	
property manifest: AppManifest

	

	
mtime: float

	

	
classmethod read_json_manifest(manifest_file: Path) → StoredArchiveManifest

	

	
size: int

	

	
to_dict()

	

	
write_json_manifest(manifest_file: Path)

	

	
ksconf.app.manifest.create_manifest_from_archive(archive_file: Path, manifest_file: Path, manifest: AppManifest) → StoredArchiveManifest

	Create a new stored manifest file based on a given archive.

	
ksconf.app.manifest.get_stored_manifest_name(archive: Path) → Path

	Calculate the name of the stored manifest file based on archive.

	
ksconf.app.manifest.load_manifest_for_archive(archive: ~pathlib.Path, manifest_file: ~pathlib.Path = None, *, read_manifest=True, write_manifest=True, permanent_archive: ~pathlib.Path = None, log_callback=<built-in function print>) → AppManifest

	Load manifest for archive and create a stored copy of the manifest in
manifest_file. On subsequent calls the manifest data stored to disk
will be reused assuming manifest_file is up-to-date.

File modification time and size are used to determine if archive has
been changed since the manifest_file was written.

If no manifest_file is provided, the default manifest naming convention
will be applied where the manifest_file is stored in the same directory
as archive.

If permanent_archive is provided, then we assume it is the persistent
name and archive is a temporary resource. In this mode, the default
manifest_file is also based on permanent_archive not archive.

Module contents

Splunk App helper classes

Note that these representations are for native Splunk apps that use ‘default’
and ‘local’ and have not built-in concept of ksconf layers.

	
ksconf.app.get_facts_manifest_from_archive(archive: Path, calculate_hash=True, check_paths=True) → tuple[AppFacts, AppManifest]

	Get both AppFacts and AppManifest from a single archive.
If calculate_hash is True, then the manifest will contain checksums for
all files in the archive. Without this, it’s not possible to calculate a
hash for the combined manifest.

Use this function to collect both metadata about the app and a full listing
of the app’s contents.

ksconf.builder package

Submodules

ksconf.builder.cache module

	
class ksconf.builder.cache.CachedRun(root: Path)

	Bases: object

	
STATE_DISABLED = 'disabled'

	

	
STATE_EXISTS = 'exists'

	

	
STATE_NEW = 'new'

	

	
STATE_TAINT = 'taint'

	

	
cache_dir

	

	
property cached_inputs

	

	
property cached_outputs

	

	
config_file

	

	
disable()

	

	
dump()

	

	
property exists

	

	
inputs_identical(inputs: FileSet) → bool

	

	
property is_disabled

	

	
property is_expired

	

	
property is_new

	

	
load()

	

	
rename(dest)

	

	
root

	

	
set_cache_info(type: str, data: FileSet)

	

	
set_settings(cache_settings)

	

	
taint()

	

	
class ksconf.builder.cache.FileSet(fingerprint=<function fingerprint_hash>)

	Bases: object

A collection of fingerprinted files.

Currently the fingerprint is only a SHA256 hash.

Two constructors are provided for building an instance from either files that
live on the filesystem, via from_filesystem() or from a persisted
cached record available from the from_cache().
The filesystem version actively reads all inputs files at object creation
time, so this can be costly, especially if repeated.

	
add_file(root: Path, relative_path: str)

	Add a simple relative path to a file to the FileSet.

	
add_glob(root: Path, pattern: str)

	Recursively add all files matching glob pattern.

	
copy_all(src_dir: Path, dest_dir: Path)

	Copy a the given set of files from one location to another.

	
files

	

	
files_meta

	

	
classmethod from_cache(data)

	

	
classmethod from_filesystem(root: Path, files: List[str] = None) → FileSet

	Create a new FileSet instance based on a filesystem location.
If files is None, then the entire directory is added recursively.

	
get_fingerprint

	

	
ksconf.builder.cache.fingerprint_hash(path: Path) → dict

	

	
ksconf.builder.cache.fingerprint_stat(path: Path) → dict

	

ksconf.builder.core module

Cache build requirements:

	Caching mechanism should inspect ‘inputs’ (collect file hashes) to determine if any content has
changed. If input varies, then command should be re-run.

	Command (decorated function) should be generally unaware of all other details of build process,
and it should ONLY be able to see files listed in “inputs”

	Allow caching to be fully disabled (run in-place with no dir proxy) for CI/CD

	Cache should have allow a timeout parameter

	decorator used to implement caching:
	
	
	decorator args:
	
	inputs: list or glob

	
	outputs (do we need this, can we just detect this??)
	Default to “.” (everything)

	timeout=0 Seconds before cache should be considered stale

	
	name=None If not given, default to the short name of the function.
	(Cache “slot”), must be filesystem safe]

	
class ksconf.builder.core.BuildManager

	Bases: object

Supports an application building process by managing individual build steps

New in version v0.8.0.

	
cache(inputs: List[str], outputs: int, timeout: int = None, name: str = None, cache_invalidation: dict | list | str = None) → None

	function decorator for caching build steps
Wrapped function must accept BuildStep instance as first parameters

XXX: Clearly document what things are good cache candidates and which are not.

Example:

	No extra argument to the function (at least currently)

	Changes to inputs files are not supported

	Deleting files aren’t supported

	Can only operate in a single directory given a limited set of inputs

	Cannot read from the source directory, and agrees not to write to dist
(In other words, limit all activities to build_path for deterministic behavior)

	
disable_cache()

	

	
get_build_step(output=None) → BuildStep

	

	
get_cache_info(name: str) → CachedRun

	

	
is_folders_set()

	

	
set_folders(source_path: Path, build_path: Path, dist_path: Path = None)

	

	
taint_cache()

	

ksconf.builder.steps module

ksconf.builder.steps: Collection of reusable build steps for reuse in your build script.

	
ksconf.builder.steps.clean_build(step: BuildStep) → None

	Ensure a clean build folder for consistent build results.

	
ksconf.builder.steps.copy_files(step: BuildStep, patterns: List[str], target: str = None) → None

	Copy source files into the build folder that match given glob patterns

	
ksconf.builder.steps.pip_install(step: BuildStep, requirements_file: str = 'requirements.txt', dest: str = 'lib', *, python_path: str = None, isolated: bool = True, dependencies: bool = True, handle_dist_info: str = 'remove', remove_console_scripts: bool = True) → None

	

Module contents

	
exception ksconf.builder.BuildCacheException

	Bases: Exception

	
exception ksconf.builder.BuildExternalException

	Bases: Exception

	
class ksconf.builder.BuildStep(build: ~pathlib.Path, source: ~pathlib.Path = None, dist: ~pathlib.Path = None, output: ~typing.TextIO = <_io.TextIOWrapper name='<stdout>' mode='w' encoding='utf-8'>)

	Bases: object

	
alternate_path(path) → BuildStep

	Construct a new BuildStep instance with only ‘build_path’ altered.

	
build_path

	

	
config

	

	
dist_path

	

	
get_logger(prefix: str = None) → Callable

	

	
property is_quiet

	

	
is_verbose()

	

	
run(executable, *args, cwd=None)

	Execute an OS-level command regarding the build process.
The process will run withing the working directory of the build folder.

	Parameters:

	
	executable (str) – Executable to launch for a build step.

	args (str) – Additional argument(s) for the new process.

	cwd (str) – Optional kw arg to change the working directory. This
defaults to the build folder.

	
run_ksconf(*args, cwd=None)

	Execute ‘ksconf’ command in the build folder.
Currently this runs as a separate process, but in the future is may be
optimized to run from within the same python process. This is an
implementation detail the caller shouldn’t care about.

	Parameters:

	
	args (str) – Additional argument(s) for the ksconf command.

	cwd (str) – Optional kw arg to change the working directory. This
defaults to the build folder.

	
source_path

	

	
verbosity

	

	
ksconf.builder.default_cli(build_manager: BuildManager, build_funct: Callable, argparse_parents: List[ArgumentParser] = ())

	This is the function you stick in the: if __name__ == '__main__' section of your code :-)

Pass in a BuildManager instance, and a callback function. The callback function must accept
(steps, args). If you have need for custom arguments, you can add them to your own
ArgumentParser instance and pass them to the argparse_parents keyword argument, and then handle
additional ‘args’ passed into the callback function.

ksconf.commands namespace

Submodules

ksconf.commands.attr module

SUBCOMMAND: ksconf attr-get <CONF> --stanza STANZA --attribute ATTR

ksconf attr-get $SPLUNK_HOME/etc/apps/Splunk_TA_aws/default/app.conf --stanza launcher --attribute version

SUBCOMMAND: ksconf attr-set <CONF> --stanza STANZA --attribute ATTR --value VALUE

ksconf attr-set $SPLUNK_HOME/etc/apps/Splunk_TA_aws/local/app.conf –stanza launcher –attribute version –value 9.9.9

echo “9.9.9” > /tmp/new_version
ksconf attr-set $SPLUNK_HOME/etc/apps/Splunk_TA_aws/local/app.conf –stanza launcher –attribute version -t file /tmp/new_version

export NEW_VERSION=1.2.3
ksconf attr-set $SPLUNK_HOME/etc/apps/Splunk_TA_aws/local/app.conf –stanza launcher –attribute version -t env NEW_VERSION

	
class ksconf.commands.attr.AttrGetCmd(name)

	Bases: KsconfCmd

	
description = 'Get a specific stanza and attribute value from a Splunk .conf file.\n'

	

	
format = 'manual'

	

	
help = 'Get the value from a specific stanzas and attribute'

	

	
maturity = 'beta'

	

	
pre_run(args)

	Optional pre-run hook.
Any exceptions or non-0 return code, will prevent run()/post_run() from being called.

	
register_args(parser)

	This function in passed the

	
run(args)

	For a given conf file, get the ‘value’ from [stanza] attribute = value

	
class ksconf.commands.attr.AttrSetCmd(name)

	Bases: KsconfCmd

	
description = 'Set a specific stanza and attribute value of a Splunk .conf file.\nThe value can be provided as a command line argument, file, or\nenvironment variable\n\nThis command does not support preserving leading or trailing whitespace.\nNormally this is desireable.\n'

	

	
format = 'manual'

	

	
get_value(value, value_type)

	

	
help = 'Set the value of a specific stanzas and attribute'

	

	
maturity = 'beta'

	

	
register_args(parser)

	This function in passed the

	
run(args)

	For a given conf file, set [stanza] attribute = value

	
set_conf_value(conf_file: Path, stanza: str, attribute: str, value: str, create_missing: bool, no_overwrite: bool)

	

ksconf.commands.check module

SUBCOMMAND: ksconf check <CONF>

Usage example: (Nice pre-commit script)

find . -name '*.conf' | ksconf check -

	
class ksconf.commands.check.CheckCmd(name)

	Bases: KsconfCmd

	
description = "\nProvides basic syntax and sanity checking for Splunk's .conf\nfiles. Use Splunk's built-in ``btool check`` for a more robust\nvalidation of attributes and values.\n\nConsider using this utility as part of a pre-commit hook."

	

	
help = 'Perform basic syntax and sanity checks on .conf files'

	

	
maturity = 'stable'

	

	
pre_run(args)

	Optional pre-run hook.
Any exceptions or non-0 return code, will prevent run()/post_run() from being called.

	
register_args(parser)

	This function in passed the

	
run(args)

	Actual works happens here. Return code should be an EXIT_CODE_* from consts.

ksconf.commands.combine module

SUBCOMMAND: combine --target=<DIR> <SRC1> [<SRC-n>]

Usage example:

cd MY_APP
ksconf combine default.d/* --target=default

	
class ksconf.commands.combine.CombineCmd(name)

	Bases: KsconfCmd

	
description = "Merge .conf settings from multiple source directories into a combined target\ndirectory. Configuration files can be stored in a ``/etc/*.d`` like directory\nstructure and consolidated back into a single 'default' directory.\n\nThis command supports both one-time operations and recurring merge jobs. For\nexample, this command can be used to combine all users' knowledge objects (stored\nin 'etc/users') after a server migration, or to merge a single user's settings\nafter their account has been renamed. Recurring operations assume some type\nof external scheduler is being used. A best-effort is made to only write to\ntarget files as needed.\n\nThe 'combine' command takes your logical layers of configs (upstream, corporate,\nSplunk admin fixes, and power user knowledge objects, ...) expressed as\nindividual folders and merges them all back into the single ``default`` folder\nthat Splunk reads from. One way to keep the 'default' folder up-to-date is\nusing client-side git hooks.\n\nNo directory layout is mandatory, but taking advantages of the native-support\nfor 'dir.d' layout works well for many uses cases. This idea is borrowed from\nthe Unix System V concept where many services natively read their config files\nfrom ``/etc/*.d`` directories.\n\nVersion notes: dir.d was added in ksconf 0.8. Starting in 1.0 the default will\nswitch to 'dir.d', so if you need the old behavior be sure to update your scripts.\n"

	

	
format = 'manual'

	

	
help = 'Combine configuration files across multiple source directories into a single\ndestination directory. This allows for an arbitrary number of Splunk\nconfiguration layers to coexist within a single app. Useful in both ongoing\nmerge and one-time ad-hoc use.\n'

	

	
maturity = 'beta'

	

	
register_args(parser)

	This function in passed the

	
run(args)

	Actual works happens here. Return code should be an EXIT_CODE_* from consts.

	
exception ksconf.commands.combine.LayerCombinerExceptionCode(msg, return_code=None)

	Bases: LayerCombinerException

	
class ksconf.commands.combine.RepeatableCombiner(*args, disable_marker: bool = False, disable_cleanup: bool = False, keep_existing: bool = False, **kwargs)

	Bases: LayerCombiner

Re-runable combiner class. Beyond the reusable layer combining functionality,
this class enables the use of a marker file for added safety. Removed files
will cleanup.

	
post_combine(target: Path)

	Handle cleanup of extra files

	
pre_combine_inventory(target: Path, src_files: list[LayerFile]) → list[LayerFile]

	Find a set of files that exist in the target folder, but in NO source folder (for cleanup)

	
prepare_target_dir(target: Path)

	Handle marker file and ensure that target directory gets created safely.

ksconf.commands.diff module

SUBCOMMAND: ksconf diff <CONF> <CONF>

Usage example:

ksconf diff default/props.conf default/props.conf

	
class ksconf.commands.diff.DiffCmd(name)

	Bases: KsconfCmd

	
description = "Compares the content differences of two .conf files\n\nThis command ignores textual differences (like order, spacing, and comments) and\nfocuses strictly on comparing stanzas, keys, and values. Note that spaces within\nany given value, will be compared. Multi-line fields are compared in a more traditional\n'diff' output so that long saved searches and macros can be compared more easily.\n"

	

	
format = 'manual'

	

	
help = 'Compare settings differences between two .conf files ignoring spacing and sort order'

	

	
maturity = 'stable'

	

	
register_args(parser)

	This function in passed the

	
run(args)

	Compare two configuration files.

ksconf.commands.filter module

SUBCOMMAND: ksconf filter <CONF>

Usage example:

ksconf filter default/savedsearches.conf --stanza "My Special Search" -o my-special-search.conf

Future things to support:

	SED-like rewriting for stanza name or key values.

	Mini eval/query language for simple data manipulations supporting mixed used of matching modes
on a case-by-base basis, custom logic (AND,OR,arbitrary groups), projections, and content
rewriting. (Should leverage custom ‘combine’ mini-language where possible.)

	
class ksconf.commands.filter.FilterCmd(*args, **kwargs)

	Bases: KsconfCmd

	
description = '\nFilter the contents of a conf file in various ways. Stanzas can be included\nor excluded based on a provided filter or based on the presence or value of a key.\n\nWhere possible, this command supports GREP-like arguments to bring a familiar feel.\n'

	

	
filter_attrs(content: dict) → dict

	

	
help = 'A stanza-aware GREP tool for conf files'

	

	
maturity = 'alpha'

	

	
output(args, matches: dict, filename)

	Process output for a single input file.

	
prep_filters(args)

	

	
register_args(parser: ArgumentParser)

	This function in passed the

	
run(args)

	Filter configuration files.

	
ksconf.commands.filter.is_disabled(attributes: dict) → bool

	

ksconf.commands.merge module

SUBCOMMAND: ksconf merge --target=<TARGET_CONF> <CONF> [<CONF-n> ...]

Usage example:

ksconf merge --target=master-props.conf /opt/splunk/etc/apps/*TA*/{default,local}/props.conf

	
class ksconf.commands.merge.MergeCmd(name)

	Bases: KsconfCmd

	
description = 'Merge two or more .conf files into a single combined .conf file.\nThis is similar to the way that Splunk logically combines the ``default`` and ``local``\nfolders at runtime.\n'

	

	
help = 'Merge two or more .conf files'

	

	
maturity = 'stable'

	

	
pre_run(args)

	Optional pre-run hook.
Any exceptions or non-0 return code, will prevent run()/post_run() from being called.

	
register_args(parser)

	This function in passed the

	
run(args)

	Merge multiple configuration files into one

ksconf.commands.minimize module

SUBCOMMAND: ksconf minimize --target=<CONF> <CONF> [<CONF-n> ...]

Usage example:

ksconf minimize --target=local/inputs.conf default/inputs.conf

	Example workflow:
	
	cp default/props.conf local/props.conf

	vi local/props.conf (edit JUST the lines you want to change)

	ksconf minimize --target=local/props.conf default/props.conf
(You could take this a step further by appending “$SPLUNK_HOME/system/default/props.conf”
and removing any SHOULD_LINEMERGE = true entries (for example)

	
class ksconf.commands.minimize.MinimizeCmd(name)

	Bases: KsconfCmd

	
description = "Minimize a conf file by removing any duplicated default settings.\n\nReduce a local conf file to only your intended changes without manually tracking\nwhich entries you've edited. Minimizing local conf files makes your local\ncustomizations easier to read and often results in cleaner upgrades.\n"

	

	
help = 'Minimize the target file by removing entries duplicated in the default conf(s)'

	

	
maturity = 'beta'

	

	
register_args(parser)

	This function in passed the

	
run(args)

	Actual works happens here. Return code should be an EXIT_CODE_* from consts.

	
ksconf.commands.minimize.explode_default_stanza(conf, default_stanza=None)

	Take the GLOBAL stanza, (aka [default]) and apply it’s settings underneath ALL other
stanzas. This is mostly only useful in minimizing and other comparison operations.

ksconf.commands.package module

SUBCOMMAND: ksconf package -f <SPL> <DIR>

Usage example:

ksconf package -f myapp.tgz MyApp/

Build system example:

ksconf package -f release/myapp-{{version}}.tgz \
 --block-local \
 --set-version={{git_tag}} \
 --set-build=${TRAVIS_BUILD_NUMBER:-0}

	
class ksconf.commands.package.PackageCmd(name)

	Bases: KsconfCmd

	
default_blocklist = ['.git*', '*.py[co]', '__pycache__', '.DS_Store']

	

	
description = 'Create a Splunk app or add on tarball (``.spl``) file from an app directory.\n\n``ksconf package`` can do useful things like, exclude unwanted files, combine layers, set the\napplication version and build number, drop or promote the ``local`` directory into ``default``.\n\nNote that some arguments, like the ``FILE`` support special values that can be automatically\nevaluated at runtime. For example the placeholders ``{{version}}`` or ``{{git_tag}}`` can be\nexpanded into the output tarball filename.\n\nIf both layering and templating are in use at the same time, be aware that templates are\nrendered prior to layering operations. This allows, for example, one layer to include a simple\n``indexes.conf`` file and another layer to include an ``indexes.conf.j2`` template.\n'

	

	
help = 'Create a Splunk app .spl file from a source directory'

	

	
static load_blocklist(path)

	

	
maturity = 'beta'

	

	
pre_run(args)

	Optional pre-run hook.
Any exceptions or non-0 return code, will prevent run()/post_run() from being called.

	
register_args(parser: ArgumentParser)

	This function in passed the

	
run(args)

	Create a Splunk app/add-on .spl file from a directory

ksconf.commands.promote module

SUBCOMMAND: ksconf promote <SOURCE> <TARGET>

Usage example: Promote local props changes (made via the UI) to the ‘default’ folder

ksconf local/props.conf default/props.conf

	
class ksconf.commands.promote.PromoteCmd(name)

	Bases: KsconfCmd

	
apply_filters(delta, invert_match=False)

	

	
static combine_stanza(a, b)

	

	
description = 'Propagate .conf settings applied in one file to another. Typically this is used\nto move ``local`` changes (made via the UI) into another layer, such as the\n``default`` or a named ``default.d/50-xxxxx``) folder.\n\nPromote has two modes: batch and interactive. In batch mode, all changes are\napplied automatically and the (now empty) source file is removed. In interactive\nmode, the user is prompted to select stanzas to promote. This way local changes\ncan be held without being promoted.\n\nNOTE: Changes are *MOVED* not copied, unless ``--keep`` is used.\n'

	

	
format = 'manual'

	

	
help = 'Promote .conf settings between layers using either batch or interactive mode.\n\nFrequently this is used to promote conf changes made via the UI (stored in\nthe ``local`` folder) to a version-controlled directory, such as ``default``.\n'

	

	
maturity = 'beta'

	

	
prep_filters(args)

	

	
register_args(parser: ArgumentParser)

	This function in passed the

	
run(args)

	Actual works happens here. Return code should be an EXIT_CODE_* from consts.

	
ksconf.commands.promote.empty_dict(d)

	

ksconf.commands.restexport module

SUBCOMMAND: ksconf rest-export --output=script.sh <CONF>

Usage example:

ksconf rest-export --output=apply_props.sh /opt/splunk/etc/app/Splunk_TA_aws/local/props.conf

NOTE:

If we add support for Windows CURL, then we’ll need to also support proper quoting for the ‘%’
character. This can be done with ‘%^’, wonky, I know…

	
class ksconf.commands.restexport.CurlCommand

	Bases: object

	
extend_args(args)

	

	
get_command()

	

	
classmethod quote(s)

	

	
class ksconf.commands.restexport.Literal(value)

	Bases: object

	
class ksconf.commands.restexport.RestExportCmd(name)

	Bases: KsconfCmd

	
static build_rest_url(base, owner, app, conf)

	

	
description = "Build an executable script of the stanzas in a configuration file that can be later applied to\na running Splunk instance via the Splunkd REST endpoint.\n\nThis can be helpful when pushing complex props and transforms to an instance where you only have\nUI access and can't directly publish an app.\n\n"

	

	
format = 'manual'

	

	
help = 'Export .conf settings as a curl script to apply to a Splunk instance later (via REST)'

	

	
maturity = 'deprecated'

	

	
register_args(parser: ArgumentParser)

	This function in passed the

	
run(args)

	Convert a conf file into a bunch of CURL commands

ksconf.commands.restpublish module

SUBCOMMAND: ksconf rest-publish <ENDPOINT> <CONF>

Usage example:

ksconf rest-publish MyApp/local/props.conf

	
class ksconf.commands.restpublish.RestPublishCmd(*args, **kwargs)

	Bases: KsconfCmd

	
connect_splunkd(args: Namespace)

	

	
delete_conf(stanza_name: str, stanza_data: Dict[str, Dict[str, str]], config_file)

	

	
description = "Publish stanzas in a .conf file to a running Splunk instance via REST. This requires access to\nthe HTTPS endpoint of Splunk. By default, ksconf will handle both the creation of new stanzas\nand the update of existing stanzas.\n\nThis can be used to push full configuration stanzas where you only have REST access and can't\ndirectly publish an app.\n\nOnly attributes present in the conf file are pushed. While this may seem obvious, this fact can\nhave profound implications in certain situations, like when using this command for continuous\nupdates. This means that it's possible for the source .conf to ultimately differ from what ends\nup on the server's .conf file. One way to avoid this, is to explicitly remove an object using\n``--delete`` mode first, and then insert a new copy of the object. Of course, this means that\nthe object will be unavailable. The other impact is that diffs only compares and shows a subset\nof attribute.\n\nBe aware, that for consistency, the configs/conf-TYPE endpoint is used for this command.\nTherefore, a reload may be required for the server to use the published config settings.\n"

	

	
handle_conf_file(args: Namespace, conf_proxy: ConfFileProxy)

	

	
help = 'Publish .conf settings to a live Splunk instance via REST'

	

	
static make_boolean(stanza: Dict[str, Dict[str, str]], attr: str = 'disabled')

	

	
maturity = 'alpha'

	

	
publish_conf(stanza_name: str, stanza_data: Dict[str, Dict[str, str]], config_file)

	

	
register_args(parser: ArgumentParser)

	This function in passed the

	
run(args: Namespace)

	Actual works happens here. Return code should be an EXIT_CODE_* from consts.

ksconf.commands.snapshot module

SUBCOMMAND: ksconf snapshot --output=FILE.json <PATH> [... <PATH-n>]

Usage example:

ksconf snapshot --output=daily.json /opt/splunk/etc/app/

	
class ksconf.commands.snapshot.ConfSnapshot(config)

	Bases: object

	
schema_version = 0.2

	

	
snapshot_dir(path)

	

	
snapshot_file_conf(path)

	

	
write_snapshot(stream, **kwargs)

	

	
class ksconf.commands.snapshot.ConfSnapshotConfig

	Bases: object

	
max_file_size = 10485760

	

	
class ksconf.commands.snapshot.SnapshotCmd(name)

	Bases: KsconfCmd

	
description = 'Build a static snapshot of various configuration files stored within a structured json export\nformat. If the .conf files being captured are within a standard Splunk directory structure,\nthen certain metadata and namespace information is assumed based on typical path locations.\nIndividual apps or conf files can be collected as well, but less metadata may be extracted.\n'

	

	
help = 'Snapshot .conf file directories into a JSON dump format'

	

	
register_args(parser)

	This function in passed the

	
run(args)

	Snapshot multiple configuration files into a single json snapshot.

ksconf.commands.sort module

SUBCOMMAND: ksconf sort <CONF>

Usage example: To recursively sort all files (in-place):

find . -name '*.conf' | xargs ksconf sort -i

	
class ksconf.commands.sort.SortCmd(name)

	Bases: KsconfCmd

	
description = 'Sort a Splunk .conf file. Sort has two modes: (1) by default, the sorted\nconfig file will be echoed to the screen. (2) the config files are updated\nin-place when the ``-i`` option is used.\n\nManually managed conf files can be protected against changes by adding a comment containing the\nstring ``KSCONF-NO-SORT`` to the top of any .conf file.\n'

	

	
format = 'manual'

	

	
help = 'Sort a Splunk .conf file creating a normalized format appropriate for version control'

	

	
maturity = 'stable'

	

	
pre_run(args)

	Optional pre-run hook.
Any exceptions or non-0 return code, will prevent run()/post_run() from being called.

	
register_args(parser)

	This function in passed the

	
run(args)

	Sort one or more configuration file.

ksconf.commands.unarchive module

SUBCOMMAND: ksconf unarchive <tarball>

Usage example:

ksconf unarchive splunk-add-on-for-amazon-web-services_111.tgz

	
class ksconf.commands.unarchive.UnarchiveCmd(name)

	Bases: KsconfCmd

	
description = "\nInstall or overwrite an existing app in a git-friendly way.\nIf the app already exists, steps will be taken to upgrade it safely.\n\nThe ``default`` folder can be redirected to another path (i.e., ``default.d/10-upstream`` or\nother desirable path if you're using the ``ksconf combine`` tool to manage extra layers).\n"

	

	
format = 'manual'

	

	
help = 'Install or upgrade an existing app in a git-friendly and safe way'

	

	
maturity = 'beta'

	

	
register_args(parser)

	This function in passed the

	
run(args)

	Install / upgrade a Splunk app from an archive file

ksconf.commands.xmlformat module

SUBCOMMAND: ksconf xml-format <XML>

Usage example: (Nice pre-commit script)

find default/data/ui -name '*.xml' | ksconf xml-format -

	
class ksconf.commands.xmlformat.XmlFormatCmd(name)

	Bases: KsconfCmd

	
description = "\nNormalize and apply consistent XML indentation and CDATA usage for XML dashboards and\nnavigation files.\n\nTechnically this could be used on *any* XML file, but certain element names specific to Splunk's\nsimple XML dashboards are handled specially, and therefore could result in unusable results.\n\nThe expected indentation level is guessed based on the first element indentation, but can be\nexplicitly set if not detectable.\n"

	

	
help = 'Normalize XML view and nav files'

	

	
maturity = 'alpha'

	

	
pre_commit_repo_migration_warning(args)

	Issue migration warning if (1) running hooks from the old repo (missing
arg), and (2) parent process is from pre-commit (env var).

Another workaround is to use:

- repo: https://github.com/Kintyre/ksconf
rev: v0.11.8
hooks:
 - id: ksconf-check
 - id: ksconf-sort
 exclude: logging\.conf
 - id: ksconf-xml-format
 args: --disable-pre-commit-migration-check
additional_dependencies: [lxml]

But honestly, isn’t it just easy to add -pre-commit to the repo?

Remove this after Dec 2024 or v0.13.0

	
register_args(parser)

	This function in passed the

	
run(args)

	Actual works happens here. Return code should be an EXIT_CODE_* from consts.

ksconf.conf package

Submodules

ksconf.conf.delta module

	
class ksconf.conf.delta.DiffGlobal(type)

	Bases: NamedTuple

	
type: DiffLevel

	Alias for field number 0

	
class ksconf.conf.delta.DiffHeader(name, mtime=None)

	Bases: object

	
detect_mtime()

	

	
mtime: float = None

	

	
name: str

	

	
class ksconf.conf.delta.DiffLevel(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: Enum

	
GLOBAL = 'global'

	

	
KEY = 'key'

	

	
STANZA = 'stanza'

	

	
class ksconf.conf.delta.DiffOp(tag, location, a, b)

	Bases: NamedTuple

	
a: Dict[str, Dict[str, str]] | Dict[str, str] | str | None

	Alias for field number 2

	
b: Dict[str, Dict[str, str]] | Dict[str, str] | str | None

	Alias for field number 3

	
location: DiffGlobal | DiffStanza | DiffStzKey

	Alias for field number 1

	
tag: DiffVerb

	Alias for field number 0

	
class ksconf.conf.delta.DiffStanza(type, stanza)

	Bases: NamedTuple

	
stanza: str

	Alias for field number 1

	
type: DiffLevel

	Alias for field number 0

	
class ksconf.conf.delta.DiffStzKey(type, stanza, key)

	Bases: NamedTuple

	
key: str

	Alias for field number 2

	
stanza: str

	Alias for field number 1

	
type: DiffLevel

	Alias for field number 0

	
class ksconf.conf.delta.DiffVerb(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: Enum

	
DELETE = 'delete'

	

	
EQUAL = 'equal'

	

	
INSERT = 'insert'

	

	
REPLACE = 'replace'

	

	
ksconf.conf.delta.compare_cfgs(a: Dict[str, Dict[str, str]], b: Dict[str, Dict[str, str]], replace_level: DiffLevel = DiffLevel.GLOBAL) → List[DiffOp]

	Calculate a set of deltas which describes how to transform a into b.

	Parameters:

	
	a (dict) – the first/original configuration entity

	b (dict) – the second/target configuration entity

	replace_level (str: global, stanza, or key) – The highest level ‘replace’ event that can be returned.
Acceptable values are global, stanza, and key.
These examples may help:

	Using ‘global’ with identical inputs will report a single global-level equal op.

	Using ‘stanza’ with identical inputs will return all stanzas as equal.

	Using ‘key’ will ensure that two stanzas with no common keys will be reported in
terms of key changes. Whereas ‘global’ or ‘stanza’ would result in a single giant replace op.

	Returns:

	a sequence of differences in tuples

	Return type:

	[DiffOp]

Note

The DiffOp output idea was borrowed from
SequenceMatcher class in the difflib
in the standard Python module.

This function returns a sequence of 5 element tuples describing the
transformation based on the detail level specified in replace_level.

Each DiffOp (named tuple) takes the form:

(tag, location, a, b)

tag:

	Value

	Meaning

	‘replace’

	same element in both, but different values.

	‘delete’

	remove value b

	‘insert’

	insert value a

	‘equal’

	same values in both

location is a namedtuple that can take the following forms:

	Tuple form

	Type

	Description

	(“global”)

	DiffGlobal

	Global file level context (e.g., both files are the same)

	(“stanza”, stanza)

	DiffStanza

	Stanzas are the same, or completely different (no shared keys)

	(“key”, stanza, key)

	DiffStzKey

	Key level change

Changed in version v0.8.8: The preserve_empty argument was originally introduced to preserve backwards
compatibility, but it ended up introducing new bugs.
Additionally, no use cases were found where better to automatically discarding empty stanzas.

Changed in version v0.8.8: The allow_level0 argument was replaced with replace_level.
Instead of using allow_level0=False use replace_level="stanza".
At the same time a new feature was added to support replace_level="key".
The default behavior remains the same.

	
ksconf.conf.delta.compare_stanzas(a: Dict[str, str], b: Dict[str, str], stanza_name: str, replace_level: DiffLevel = DiffLevel.GLOBAL) → List[DiffOp]

	
	Parameters:

	replace_level (bool) – If a and b have no common keys, is a single stanza-level
‘replace’ is issue unless replace_level="key"

	
ksconf.conf.delta.diff_obj_json_format(o)

	

	
ksconf.conf.delta.is_equal(delta: List[DiffOp]) → bool

	Is the delta output show that the compared objects are identical

	
ksconf.conf.delta.reduce_stanza(stanza: Dict[str, str], keep_attrs: Sequence) → dict

	Pre-process a stanzas so that only a common set of keys will be compared.

	Parameters:

	
	stanza (dict) – Stanzas containing attributes and values

	keep_attrs ((list, set, tuple, dict)) – Listing of attributes to preserve

	Returns:

	a reduced copy of stanza.

	
ksconf.conf.delta.show_diff(stream: TextIO, diffs: List[DiffOp], headers=None) → int

	

	
ksconf.conf.delta.show_text_diff(stream: TextIO, a: PathLike, b: PathLike)

	

	
ksconf.conf.delta.summarize_cfg_diffs(delta: List[DiffOp], stream: TextIO)

	Summarize a delta into a human-readable format. The input delta is in the format
produced by the compare_cfgs() function.

	
ksconf.conf.delta.write_diff_as_json(delta: List[DiffOp], stream, **dump_args)

	

ksconf.conf.merge module

	
ksconf.conf.merge.merge_app_local(app_folder: str, cleanup: bool = True) → None

	Find everything in local, if it has a corresponding file in default, merge.
This function assumes standard Splunk app path names.

	
ksconf.conf.merge.merge_conf_dicts(*dicts: Dict[str, Dict[str, str]]) → Dict[str, Dict[str, str]]

	

	
ksconf.conf.merge.merge_conf_files(dest: ConfFileProxy, configs: List[ConfFileProxy], dry_run: bool = False, banner_comment: str = None) → SmartEnum

	

	
ksconf.conf.merge.merge_update_any_file(dest: str, sources: List[str], remove_source: bool = False) → None

	

	
ksconf.conf.merge.merge_update_conf_file(dest: str, sources: List[str], remove_source: bool = False) → None

	Dest is treated as both the output, and the highest priority source.

ksconf.conf.meta module

Incomplete documentation available here:

https://docs.splunk.com/Documentation/Splunk/latest/Admin/Defaultmetaconf

Specifically, attribute-level ACls aren’t discussed nor is the magic “import” directive.

LEVELS:

0 - global (or 1 stanza=”default”)
1 - conf
2 - stanzas
3 - attribute

	
class ksconf.conf.meta.MetaData

	Bases: object

	
static expand_layers(layers)

	
	Parameters:

	layers (list(dict)) – layer of stanzas, starting with the global ending with conf/stanza/attr

	Returns:

	Expanded layer

	Return type:

	dict

	
feed_conf(conf)

	

	
feed_file(stream)

	

	
get(*names)

	

	
get_layer(*names)

	

	
iter_raw()

	RAW

	
classmethod parse_meta(stanza)

	Split out the values of ‘access’ (maybe more someday)
:param stanza: content of a meta stanza
:return: extended meta data
:rtype: dict

	
regex_access = '(?:^|\\s*,\\s*)(?P<action>read|write)\\s*:\\s*\\[\\s*(?P<roles>[^\\]]+?)\\s*\\]'

	

	
walk()

	

	
write_stream(stream: TextIO, sort=True)

	

	
class ksconf.conf.meta.MetaLayer(name)

	Bases: object

	
property data

	

	
items(prefix=None)

	Helpful when rebuilding the input file.

	
resolve(name)

	

	
update(*args, **kwargs)

	

	
walk(_prefix=())

	

ksconf.conf.parser module

Parse and write Splunk’s .conf files

According to this doc:

https://docs.splunk.com/Documentation/Splunk/7.2.3/Admin/Howtoeditaconfigurationfile

	Comments must start at the beginning of a line (#)

	Comments may not be after a stanza name or on an attribute’s value

	Supporting encoding is UTF-8 (and therefore ASCII too)

	
exception ksconf.conf.parser.ConfParserException

	Bases: Exception

	
class ksconf.conf.parser.DuplicateEnum(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: Enum

	
EXCEPTION = 'exception'

	

	
MERGE = 'merge'

	

	
OVERWRITE = 'overwrite'

	

	
exception ksconf.conf.parser.DuplicateKeyException

	Bases: ConfParserException

	
exception ksconf.conf.parser.DuplicateStanzaException

	Bases: ConfParserException

	
class ksconf.conf.parser.Token

	Bases: object

Immutable token object. deepcopy returns the same object

	
ksconf.conf.parser.conf_attr_boolean(value: str | bool | int) → bool

	

	
ksconf.conf.parser.cont_handler(iterable: Iterable[str], continue_re: Pattern = re.compile('^(.*)\\\\$'), breaker: str = '\n') → Generator[str, None, None]

	Look for trailing backslashes (”\”) which indicate a value for an attribute is split across
multiple lines. This function will group such lines together, and pass all other lines through
as-is. Note that the continuation character must be the very last character on the line,
trailing whitespace is not allowed.

	Parameters:

	
	iterable (iter) – lines from a configuration file

	continue_re – regular expression to detect the continuation character

	breaker – joining string when combining continued lines into a single string.
Default ‘\n’

	Returns:

	lines of text

	Return type:

	str

	
ksconf.conf.parser.detect_by_bom(path: Path | str) → str

	

	
ksconf.conf.parser.inject_section_comments(section: Dict[str, str], prepend: str = None, append: str = None)

	Extract existing comments from section dict (in order; and remove them)
Add in any prepend/append comments (if that comment isn’t already present)
Re-inject comments back into the section dict with fresh numbering

	
ksconf.conf.parser.parse_conf(stream: Path | str | TextIO | Iterable[str], profile: Dict = {'dup_key': DuplicateEnum.OVERWRITE, 'dup_stanza': DuplicateEnum.EXCEPTION, 'keep_comments': True, 'strict': True}, encoding: str = None) → Dict[str, Dict[str, str]]

	Parse a .conf file. This is a wrapper around parse_conf_stream() that allows filenames
or stream to be passed in.

	Parameters:

	
	stream (str, file) – the path to a configuration file or open file-like object to be parsed

	profile – parsing configuration settings

	encoding – Defaults to the system default, (Often “utf-8”)

	Returns:

	a mapping of the stanza and attributes.
The resulting output is accessible as [stanza][attribute] -> value

	Return type:

	dict

	
ksconf.conf.parser.parse_conf_stream(stream: TextIO | Iterable[str], keys_lower: bool = False, handle_conts: bool = True, keep_comments: bool = False, dup_stanza: DuplicateEnum = DuplicateEnum.EXCEPTION, dup_key: DuplicateEnum = DuplicateEnum.OVERWRITE, strict: bool = False) → Dict[str, Dict[str, str]]

	Low-level conf parsing functionality.

Most often, either parse_conf() or parse_string() are better options.

	
ksconf.conf.parser.parse_string(s: str, name: str = None, profile: Dict = {'dup_key': DuplicateEnum.OVERWRITE, 'dup_stanza': DuplicateEnum.EXCEPTION, 'keep_comments': True, 'strict': True}) → Dict[str, Dict[str, str]]

	Parse a .conf file that’s already in memory, as a string.

	
ksconf.conf.parser.section_reader(stream: Iterable[str], section_re: Pattern = re.compile('^[\\s\\t]*\\[(.*)\\]\\s*$')) → Generator[Tuple[str, List[str]], None, None]

	This generator break a configuration file stream into sections. Each section contains a name
and a list of text lines held within that section.

Sections that have no entries must be preserved. Any lines before the first section are send back
with the section name of None.

	Parameters:

	
	stream (file) – configuration file input stream

	section_re – regular expression for detecting stanza headers

	Returns:

	sections in the form of (section_name, lines_of_text)

	Return type:

	tuple

	
ksconf.conf.parser.smart_write_conf(filename: Path | str, conf: Dict[str, Dict[str, str]], stanza_delim: str = '\n', sort: bool = True, temp_suffix: str = '.tmp', mtime: float = None) → SmartEnum

	Write conf data to a specific file, but only when necessary.
This function is essentially the same as write_conf(), except that it
avoids updating the file if it already exists and has the desired content.

	
ksconf.conf.parser.splitup_kvpairs(lines: Iterable[str], comments_re: Pattern = re.compile('^\\s*[#;]'), keep_comments: bool = False, strict: bool = False) → Generator[Tuple[str, str], None, None]

	Break up ‘attribute=value’ entries in a configuration file.

	Parameters:

	
	lines (iter) – the body of a stanza containing associated attributes and values

	comments_re – Regular expression used to detect comments.

	keep_comments (bool, optional) – Should comments be preserved in the output. Defaults to False.

	strict (bool, optional) – Should unknown content in the stanza stop processing. Defaults to False
allowing “junk” to be silently ignored for a best-effort parse.

	Returns:

	iterable of (attribute,value) tuples

	
class ksconf.conf.parser.update_conf(conf_path: Path | str, profile: Dict = {'dup_key': DuplicateEnum.OVERWRITE, 'dup_stanza': DuplicateEnum.EXCEPTION, 'keep_comments': True, 'strict': True}, encoding: str = None, make_missing: bool = False)

	Bases: object

Context manager that allows for simple in-place updates to conf files.
This provides a simple dict-like interface for easy updates.

Usage example:

with update_conf("app.conf") as conf:
 conf["launcher"]["version"] = "1.0.2"
 conf["install"]["build"] = 33

	Parameters:

	
	conf_path (str) – Path to .conf file to be edited.

	profile (dict) – Parsing settings and strictness profile.

	encoding (str) – encoding to use for file operations.

	make_missing (bool) – When true, a new blank configuration file will be created
if conf_path is missing, otherwise an exception will be raised.

	
cancel()

	Indicate that no updates were made and all processing is complete.
An error will occur if additional read/writes are attempted.

	
keys() → List[str]

	

	
update(*args, **kwargs)

	

	
ksconf.conf.parser.write_conf(stream: Path | str | TextIO, conf: Dict[str, Dict[str, str]], stanza_delim: str = '\n', sort: bool = True, temp_suffix: str = '.tmp', mtime: float = None)

	

	
ksconf.conf.parser.write_conf_stream(stream: TextIO, conf: Dict[str, Dict[str, str]], stanza_delim: str = '\n', sort: bool = True)

	

Module contents

ksconf.util package

Submodules

ksconf.util.compare module

	
ksconf.util.compare.cmp_sets(a, b)

	Result tuples in format (a-only, common, b-only)

	
ksconf.util.compare.file_compare(fn1, fn2)

	

	
ksconf.util.compare.fileobj_compare(f1, f2)

	

ksconf.util.completers module

	
ksconf.util.completers.DirectoriesCompleter(*args, **kwargs)

	

	
ksconf.util.completers.FilesCompleter(*args, **kwargs)

	

	
ksconf.util.completers.autocomplete(*args, **kwargs)

	

ksconf.util.file module

	
class ksconf.util.file.ReluctantWriter(path, *args, **kwargs)

	Bases: object

Context manager to intelligently handle updates to an existing file. New content is written
to a temp file, and then compared to the current file’s content. The file file will be
overwritten only if the contents changed.

	
ksconf.util.file.atomic_open(name: Path, temp_name: str | Path | Callable | None, mode='w', **open_kwargs) → IO

	Context manager to atomically write to a file stream. Like the open() context manager, a file
handle returned when the context is entered. Upon successful completion, the temporary file is
renamed into place; thus providing an atomic update operation.

See atomic_writer() for behaviors regarding the temp_name parameter option.

This function can be used nearly any place that with open(myfile, mode="w") as stream

	
ksconf.util.file.atomic_writer(dest: Path, temp_name: str | Path | Callable | None) → str

	Context manager to atomically update a destination. When entering the context, a temporary file
name is returned. When the context is successfully exited, the temporary file is renamed into
place. Either way, the temporary file is removed.

The name of the temporary file can be controlled via temp_name. If a str is provided,
it will be used as a suffix. If a Path is provided, that will be used as the literal temporary
file name. If a callable is given, the dest path will be passed into the callable to
determine the temporary file. Alternatively, the entire _atomic_ nature of this function can be
disabled by passing temp_name=None.

	
ksconf.util.file.dir_exists(directory)

	Ensure that the directory exists

	
ksconf.util.file.expand_glob_list(iterable, do_sort=False)

	

	
ksconf.util.file.file_fingerprint(path, compare_to=None)

	

	
ksconf.util.file.file_hash(path, algorithm='sha256')

	

	
ksconf.util.file.relwalk(top, topdown=True, onerror=None, followlinks=False)

	Relative path walker
Like os.walk() except that it doesn’t include the “top” prefix in the resulting ‘dirpath’.

	
ksconf.util.file.secure_delete(path: Path, passes=3)

	A simple file shred technique. If there’s demand, this could be expanded.
But for now, ‘secure’ means just slightly more secure that unlink().

Adapted from from Ansible’s _shred_file_custom()

	
ksconf.util.file.smart_copy(src, dest)

	Copy (overwrite) file only if the contents have changed.

	
ksconf.util.file.splglob_simple(pattern)

	Return a splglob that either matches a full path or match a simple file

	
ksconf.util.file.splglob_to_regex(pattern, re_flags=None)

	

ksconf.util.rest module

	
ksconf.util.rest.build_rest_namespace(base, owner=None, app=None)

	

	
ksconf.util.rest.build_rest_url(base, service, owner=None, app=None)

	

ksconf.util.terminal module

	
class ksconf.util.terminal.TermColor(stream)

	Bases: object

Simple color setting helper class that’s a context manager wrapper around a stream.
This ensure that the color is always reset at the end of a session.

	
color(*codes)

	

	
reset()

	

	
write(content)

	

Module contents

	
ksconf.util.debug_traceback()

	If the ‘KSCONF_DEBUG’ environmental variable is set, then show a stack trace.

	
ksconf.util.decorator_with_opt_kwargs(decorator: Callable) → Callable

	Make a decorator that can work with or without args.
Heavily borrowed from: https://gist.github.com/ramonrosa/402af55633e9b6c273882ac074760426
Thanks to GitHub user ramonrosa

ksconf.vc package

Submodules

ksconf.vc.git module

	
class ksconf.vc.git.GitCmdOutput(cmd, returncode, stdout, stderr, lines)

	Bases: tuple

	
cmd

	Alias for field number 0

	
lines

	Alias for field number 4

	
returncode

	Alias for field number 1

	
stderr

	Alias for field number 3

	
stdout

	Alias for field number 2

	
exception ksconf.vc.git.GitNotAvailable

	Bases: Exception

	
ksconf.vc.git.git_cmd(args, shell=False, cwd=None, capture_std=True, encoding='utf-8')

	

	
ksconf.vc.git.git_cmd_iterable(args, iterable, cwd=None, cmd_len=1024)

	

	
ksconf.vc.git.git_is_clean(path=None, check_untracked=True, check_ignored=False)

	

	
ksconf.vc.git.git_is_working_tree(path=None)

	

	
ksconf.vc.git.git_ls_files(path, *modifiers)

	

	
ksconf.vc.git.git_status_summary(path)

	

	
ksconf.vc.git.git_status_ui(path, *args)

	

	
ksconf.vc.git.git_version()

	

Module contents

Build example

Take a look at this example build.py file that use the ksconf.builder module.

 1#!/usr/bin/env python
 2#
 3# KSCONF Official example app building script
 4#
 5# NOTE: Keep in mind that this is all very experimental and subject to change.
 6import sys
 7from pathlib import Path
 8
 9from ksconf.builder import QUIET, VERBOSE, BuildManager, BuildStep, default_cli
10from ksconf.builder.steps import clean_build, copy_files, pip_install
11
12manager = BuildManager()
13
14APP_FOLDER = "TA-my_technology"
15SPL_NAME = "ta_my_technology-{{version}}.tgz"
16SOURCE_DIR = "."
17
18REQUIREMENTS = "requirements.txt"
19
20# Files that support the build process, but don't end up in the tarball.
21BUILD_FILES = [
22 REQUIREMENTS,
23]
24
25COPY_FILES = [
26 "README.md",
27 "bin/*.py",
28 "default/",
29 "metadata/*.meta",
30 "static/",
31 "lookups/*.csv",
32 "appserver/",
33 "README/*.spec",
34] + BUILD_FILES
35
36
37@manager.cache([REQUIREMENTS], ["lib/"], timeout=7200)
38def python_packages(step):
39 # Reuse shared function from ksconf.build.steps
40 pip_install(step, REQUIREMENTS, "lib",
41 handle_dist_info="remove")
42
43
44def package_spl(step: BuildStep):
45 log = step.get_logger()
46 top_dir = step.dist_path.parent
47 release_path = top_dir / ".release_path"
48 release_name = top_dir / ".release_name"
49 # Verbose message
50 log("Starting to package SPL file!", VERBOSE)
51 step.run(sys.executable, "-m", "ksconf", "package",
52 "--file", step.dist_path / SPL_NAME, # Path to created tarball
53 "--app-name", APP_FOLDER, # Top-level directory name
54 "--block-local", # VC build, no 'local' folder
55 "--release-file", str(release_path),
56 ".")
57 # Provide the dist file as a short name too (used by some CI/CD tools)
58 path = release_path.read_text()
59 short_name = Path(path).name
60 release_name.write_text(short_name)
61 # Output message will be produced even in QUIET mode
62 log(f"Created SPL file: {short_name}", QUIET)
63
64
65def build(step: BuildStep, args):
66 """ Build process """
67 # Step 1: Clean/create build folder
68 clean_build(step)
69
70 # Step 2: Copy files from source to build folder
71 copy_files(step, COPY_FILES)
72
73 # Step 3: Install Python package dependencies
74 python_packages(step)
75
76 # Step 4: Make tarball
77 package_spl(step)
78
79
80if __name__ == '__main__':
81 # Tell build manager where stuff lives
82 manager.set_folders(SOURCE_DIR, "build", "dist")
83
84 # Launch build CLI
85 default_cli(manager, build)

Usage notes

	BuildManager - is used to help orchestrate the build process.

	step is an instance of BuildStep, which is passed as the first argument to all the of step-service functions.
This class assists with logging, and directing all activities to the correct paths.

	There’s no interal interface for ksconf package yet, hence another instance of Python is launched on line 48.
This is done using the module execution mode of Python, which is a slightly more reliable way of launching ksconf from within itself.
For whatever that’s worth.

 Python Module Index

 k

 		 	

 		
 k	

 	[image: -]
 	
 ksconf	

 	
 	
 ksconf.app	

 	
 	
 ksconf.app.deploy	

 	
 	
 ksconf.app.facts	

 	
 	
 ksconf.app.manifest	

 	
 	
 ksconf.archive	

 	
 	
 ksconf.builder	

 	
 	
 ksconf.builder.cache	

 	
 	
 ksconf.builder.core	

 	
 	
 ksconf.builder.steps	

 	
 	
 ksconf.cli	

 	
 	
 ksconf.combine	

 	
 	
 ksconf.command	

 	
 	
 ksconf.commands	

 	
 	
 ksconf.commands.attr	

 	
 	
 ksconf.commands.check	

 	
 	
 ksconf.commands.combine	

 	
 	
 ksconf.commands.diff	

 	
 	
 ksconf.commands.filter	

 	
 	
 ksconf.commands.merge	

 	
 	
 ksconf.commands.minimize	

 	
 	
 ksconf.commands.package	

 	
 	
 ksconf.commands.promote	

 	
 	
 ksconf.commands.restexport	

 	
 	
 ksconf.commands.restpublish	

 	
 	
 ksconf.commands.snapshot	

 	
 	
 ksconf.commands.sort	

 	
 	
 ksconf.commands.unarchive	

 	
 	
 ksconf.commands.xmlformat	

 	
 	
 ksconf.compat	

 	
 	
 ksconf.conf	

 	
 	
 ksconf.conf.delta	

 	
 	
 ksconf.conf.merge	

 	
 	
 ksconf.conf.meta	

 	
 	
 ksconf.conf.parser	

 	
 	
 ksconf.consts	

 	
 	
 ksconf.filter	

 	
 	
 ksconf.hook	

 	
 	
 ksconf.hookspec	

 	
 	
 ksconf.layer	

 	
 	
 ksconf.package	

 	
 	
 ksconf.setup_entrypoints	

 	
 	
 ksconf.util	

 	
 	
 ksconf.util.compare	

 	
 	
 ksconf.util.completers	

 	
 	
 ksconf.util.file	

 	
 	
 ksconf.util.rest	

 	
 	
 ksconf.util.terminal	

 	
 	
 ksconf.vc	

 	
 	
 ksconf.vc.git	

 	
 	
 ksconf.xmlformat	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X

A

 	
 	a (ksconf.conf.delta.DiffOp attribute)

 	action (ksconf.app.deploy.DeployAction attribute)

 	(ksconf.app.deploy.DeployAction_ExtractFile attribute)

 	(ksconf.app.deploy.DeployAction_RemoveFile attribute)

 	(ksconf.app.deploy.DeployAction_SetAppName attribute)

 	(ksconf.app.deploy.DeployAction_SourceReference attribute)

 	add() (ksconf.app.deploy.DeploySequence method)

 	add_file() (ksconf.builder.cache.FileSet method)

 	add_glob() (ksconf.builder.cache.FileSet method)

 	add_layer() (ksconf.layer.DirectLayerRoot method)

 	(ksconf.layer.LayerRootBase method)

 	add_layer_filter() (ksconf.combine.LayerCombiner method)

 	add_parser() (ksconf.command.KsconfCmd method)

 	add_rule() (ksconf.layer.LayerFilter method)

 	add_splunkd_access_args() (in module ksconf.command)

 	add_splunkd_namespace() (in module ksconf.command)

 	allows_disable (ksconf.app.facts.AppFacts attribute)

 	alternate_path() (ksconf.builder.BuildStep method)

 	AppArchiveContentError

 	AppArchiveError

 	
 	AppFacts (class in ksconf.app.facts)

 	apply_filter() (ksconf.layer.DotDLayerRoot method)

 	(ksconf.layer.LayerRootBase method)

 	apply_filters() (ksconf.commands.promote.PromoteCmd method)

 	apply_sequence() (ksconf.app.deploy.DeployApply method)

 	AppManifest (class in ksconf.app.manifest)

 	AppManifestFile (class in ksconf.app.manifest)

 	AppManifestStorageError

 	AppManifestStorageInvalid

 	AppPackager (class in ksconf.package)

 	AppVarMagic (class in ksconf.package)

 	AppVarMagicException

 	archive (ksconf.app.manifest.StoredArchiveManifest attribute)

 	archive_path (ksconf.app.deploy.DeployAction_SourceReference attribute)

 	atomic_open() (in module ksconf.util.file)

 	atomic_writer() (in module ksconf.util.file)

 	AttrGetCmd (class in ksconf.commands.attr)

 	AttrSetCmd (class in ksconf.commands.attr)

 	author (ksconf.app.facts.AppFacts attribute)

 	autocomplete() (in module ksconf.util.completers)

B

 	
 	b (ksconf.conf.delta.DiffOp attribute)

 	BadPluginWarning

 	block_dirs (ksconf.layer.LayerContext attribute)

 	block_files (ksconf.layer.LayerContext attribute)

 	block_local() (ksconf.package.AppPackager method)

 	blocklist() (ksconf.package.AppPackager method)

 	build (ksconf.app.facts.AppFacts attribute)

 	build_cli_parser() (in module ksconf.cli)

 	
 	build_path (ksconf.builder.BuildStep attribute)

 	build_rest_namespace() (in module ksconf.util.rest)

 	build_rest_url() (in module ksconf.util.rest)

 	(ksconf.commands.restexport.RestExportCmd static method)

 	BuildCacheException

 	BuildExternalException

 	BuildManager (class in ksconf.builder.core)

 	BuildStep (class in ksconf.builder)

C

 	
 	cache() (in module ksconf.compat)

 	(ksconf.builder.core.BuildManager method)

 	cache_dir (ksconf.builder.cache.CachedRun attribute)

 	cached_inputs (ksconf.builder.cache.CachedRun property)

 	cached_outputs (ksconf.builder.cache.CachedRun property)

 	CachedRun (class in ksconf.builder.cache)

 	calc_regex_flags() (ksconf.filter.FilteredListRegex method)

 	cancel() (ksconf.conf.parser.update_conf method)

 	cdata_tags() (ksconf.xmlformat.SplunkSimpleXmlFormatter static method)

 	check() (ksconf.package.AppPackager method)

 	check_for_updates (ksconf.app.facts.AppFacts attribute)

 	check_paths() (ksconf.app.manifest.AppManifest method)

 	check_py() (in module ksconf.cli)

 	check_py_sane() (in module ksconf.cli)

 	CheckCmd (class in ksconf.commands.check)

 	clean_build() (in module ksconf.builder.steps)

 	cleanup() (ksconf.package.AppPackager method)

 	cli() (in module ksconf.cli)

 	cmd (ksconf.vc.git.GitCmdOutput attribute)

 	cmp_sets() (in module ksconf.util.compare)

 	color() (ksconf.util.terminal.TermColor method)

 	combine() (ksconf.combine.LayerCombiner method)

 	(ksconf.package.AppPackager method)

 	
 	combine_files() (ksconf.combine.LayerCombiner method)

 	combine_stanza() (ksconf.commands.promote.PromoteCmd static method)

 	CombineCmd (class in ksconf.commands.combine)

 	compare_cfgs() (in module ksconf.conf.delta)

 	compare_stanzas() (in module ksconf.conf.delta)

 	conf_attr_boolean() (in module ksconf.conf.parser)

 	conf_file_re (ksconf.combine.LayerCombiner attribute)

 	ConfFileType (class in ksconf.command)

 	config (ksconf.builder.BuildStep attribute)

 	config_file (ksconf.builder.cache.CachedRun attribute)

 	ConfParserException

 	ConfSnapshot (class in ksconf.commands.snapshot)

 	ConfSnapshotConfig (class in ksconf.commands.snapshot)

 	connect_splunkd() (ksconf.commands.restpublish.RestPublishCmd method)

 	cont_handler() (in module ksconf.conf.parser)

 	content_match() (ksconf.app.manifest.AppManifestFile method)

 	context (ksconf.layer.LayerRootBase.Layer attribute)

 	convert_filename() (ksconf.xmlformat.FileReadlinesCache static method)

 	copy_all() (ksconf.builder.cache.FileSet method)

 	copy_files() (in module ksconf.builder.steps)

 	CREATE (ksconf.consts.SmartEnum attribute)

 	create_filtered_list() (in module ksconf.filter)

 	create_manifest_from_archive() (in module ksconf.app.manifest)

 	CurlCommand (class in ksconf.commands.restexport)

D

 	
 	data (ksconf.conf.meta.MetaLayer property)

 	debug() (in module ksconf.setup_entrypoints)

 	(ksconf.combine.LayerCombiner method)

 	debug_traceback() (in module ksconf.util)

 	decorator_with_opt_kwargs() (in module ksconf.util)

 	dedent() (in module ksconf.command)

 	default_blocklist (ksconf.commands.package.PackageCmd attribute)

 	default_cli() (in module ksconf.builder)

 	DELETE (ksconf.conf.delta.DiffVerb attribute)

 	delete_conf() (ksconf.commands.restpublish.RestPublishCmd method)

 	DeployAction (class in ksconf.app.deploy)

 	DeployAction_ExtractFile (class in ksconf.app.deploy)

 	DeployAction_RemoveFile (class in ksconf.app.deploy)

 	DeployAction_SetAppName (class in ksconf.app.deploy)

 	DeployAction_SourceReference (class in ksconf.app.deploy)

 	DeployActionType (class in ksconf.app.deploy)

 	DeployApply (class in ksconf.app.deploy)

 	deployer_lookups_push_mode (ksconf.app.facts.AppFacts attribute)

 	deployer_push_mode (ksconf.app.facts.AppFacts attribute)

 	DeployPlanner (class in ksconf.app.deploy)

 	DeploySequence (class in ksconf.app.deploy)

 	description (ksconf.app.facts.AppFacts attribute)

 	(ksconf.command.KsconfCmd attribute)

 	(ksconf.commands.attr.AttrGetCmd attribute)

 	(ksconf.commands.attr.AttrSetCmd attribute)

 	(ksconf.commands.check.CheckCmd attribute)

 	(ksconf.commands.combine.CombineCmd attribute)

 	(ksconf.commands.diff.DiffCmd attribute)

 	(ksconf.commands.filter.FilterCmd attribute)

 	(ksconf.commands.merge.MergeCmd attribute)

 	(ksconf.commands.minimize.MinimizeCmd attribute)

 	(ksconf.commands.package.PackageCmd attribute)

 	(ksconf.commands.promote.PromoteCmd attribute)

 	(ksconf.commands.restexport.RestExportCmd attribute)

 	(ksconf.commands.restpublish.RestPublishCmd attribute)

 	(ksconf.commands.snapshot.SnapshotCmd attribute)

 	(ksconf.commands.sort.SortCmd attribute)

 	(ksconf.commands.unarchive.UnarchiveCmd attribute)

 	(ksconf.commands.xmlformat.XmlFormatCmd attribute)

 	
 	detect_by_bom() (in module ksconf.conf.parser)

 	detect_mtime() (ksconf.conf.delta.DiffHeader method)

 	Dict (in module ksconf.compat)

 	diff_obj_json_format() (in module ksconf.conf.delta)

 	DiffCmd (class in ksconf.commands.diff)

 	DiffGlobal (class in ksconf.conf.delta)

 	DiffHeader (class in ksconf.conf.delta)

 	DiffLevel (class in ksconf.conf.delta)

 	DiffOp (class in ksconf.conf.delta)

 	DiffStanza (class in ksconf.conf.delta)

 	DiffStzKey (class in ksconf.conf.delta)

 	DiffVerb (class in ksconf.conf.delta)

 	dir_exists() (in module ksconf.util.file)

 	DirectLayerRoot (class in ksconf.layer)

 	DirectoriesCompleter() (in module ksconf.util.completers)

 	disable() (ksconf.builder.cache.CachedRun method)

 	(ksconf.layer.FileFactory method)

 	disable_cache() (ksconf.builder.core.BuildManager method)

 	dist_path (ksconf.builder.BuildStep attribute)

 	DotDLayerRoot (class in ksconf.layer)

 	DotDLayerRoot.Layer (class in ksconf.layer)

 	dump() (ksconf.builder.cache.CachedRun method)

 	DuplicateEnum (class in ksconf.conf.parser)

 	DuplicateKeyException

 	DuplicateStanzaException

E

 	
 	empty_dict() (in module ksconf.commands.promote)

 	enable() (ksconf.layer.FileFactory method)

 	Ep (class in ksconf.setup_entrypoints)

 	EQUAL (ksconf.conf.delta.DiffVerb attribute)

 	evaluate() (ksconf.layer.LayerFilter method)

 	EXCEPTION (ksconf.conf.parser.DuplicateEnum attribute)

 	exists (ksconf.builder.cache.CachedRun property)

 	exit() (ksconf.command.KsconfCmd method)

 	expand() (ksconf.package.AppVarMagic method)

 	
 	expand_archive_by_manifest() (in module ksconf.app.deploy)

 	expand_glob_list() (in module ksconf.util.file)

 	expand_layers() (ksconf.conf.meta.MetaData static method)

 	expand_new_only() (ksconf.package.AppPackager method)

 	expand_tags() (ksconf.xmlformat.SplunkSimpleXmlFormatter class method)

 	expand_var() (ksconf.package.AppPackager method)

 	explode_default_stanza() (in module ksconf.commands.minimize)

 	extend_args() (ksconf.commands.restexport.CurlCommand method)

 	extract_archive() (in module ksconf.archive)

 	EXTRACT_FILE (ksconf.app.deploy.DeployActionType attribute)

F

 	
 	feed() (ksconf.filter.FilteredList method)

 	feed_conf() (ksconf.conf.meta.MetaData method)

 	feed_file() (ksconf.conf.meta.MetaData method)

 	feedall() (ksconf.filter.FilteredList method)

 	file_compare() (in module ksconf.util.compare)

 	file_fingerprint() (in module ksconf.util.file)

 	file_hash() (in module ksconf.util.file)

 	FileFactory (class in ksconf.layer)

 	fileobj_compare() (in module ksconf.util.compare)

 	FileReadlinesCache (class in ksconf.xmlformat)

 	files (ksconf.app.manifest.AppManifest attribute)

 	(ksconf.builder.cache.FileSet attribute)

 	files_meta (ksconf.builder.cache.FileSet attribute)

 	FilesCompleter() (in module ksconf.util.completers)

 	FileSet (class in ksconf.builder.cache)

 	filetype_handlers (ksconf.combine.LayerCombiner attribute)

 	filter_attrs() (ksconf.commands.filter.FilterCmd method)

 	FilterCmd (class in ksconf.commands.filter)

 	FilteredList (class in ksconf.filter)

 	FilteredListRegex (class in ksconf.filter)

 	FilteredListSplunkGlob (class in ksconf.filter)

 	FilteredListString (class in ksconf.filter)

 	FilteredListWildcard (class in ksconf.filter)

 	find_conf_in_layers() (in module ksconf.package)

 	find_local() (ksconf.app.manifest.AppManifest method)

 	fingerprint_hash() (in module ksconf.builder.cache)

 	fingerprint_stat() (in module ksconf.builder.cache)

 	follow_symlink (ksconf.layer.LayerContext attribute)

 	
 	format (ksconf.command.KsconfCmd attribute)

 	(ksconf.commands.attr.AttrGetCmd attribute)

 	(ksconf.commands.attr.AttrSetCmd attribute)

 	(ksconf.commands.combine.CombineCmd attribute)

 	(ksconf.commands.diff.DiffCmd attribute)

 	(ksconf.commands.promote.PromoteCmd attribute)

 	(ksconf.commands.restexport.RestExportCmd attribute)

 	(ksconf.commands.sort.SortCmd attribute)

 	(ksconf.commands.unarchive.UnarchiveCmd attribute)

 	format_json() (ksconf.xmlformat.SplunkSimpleXmlFormatter class method)

 	format_xml() (ksconf.xmlformat.SplunkSimpleXmlFormatter class method)

 	formatted (ksconf.setup_entrypoints.Ep property)

 	freeze() (ksconf.package.AppPackager method)

 	from_app_dir() (ksconf.app.facts.AppFacts class method)

 	from_archive() (ksconf.app.facts.AppFacts class method)

 	(ksconf.app.manifest.AppManifest class method)

 	from_cache() (ksconf.builder.cache.FileSet class method)

 	from_conf() (ksconf.app.facts.AppFacts class method)

 	from_dict() (ksconf.app.deploy.DeployAction class method)

 	(ksconf.app.deploy.DeploySequence class method)

 	(ksconf.app.manifest.AppManifest class method)

 	(ksconf.app.manifest.AppManifestFile class method)

 	(ksconf.app.manifest.StoredArchiveManifest class method)

 	from_file() (ksconf.app.manifest.StoredArchiveManifest class method)

 	from_filesystem() (ksconf.app.manifest.AppManifest class method)

 	(ksconf.builder.cache.FileSet class method)

 	from_json_manifest() (ksconf.app.manifest.StoredArchiveManifest class method)

 	from_manifest() (ksconf.app.deploy.DeploySequence class method)

 	from_manifest_transformation() (ksconf.app.deploy.DeploySequence class method)

G

 	
 	gaf_filter_name_like() (in module ksconf.archive)

 	gen_arch_file_remapper() (in module ksconf.archive)

 	GenArchFile (class in ksconf.archive)

 	get() (ksconf.conf.meta.MetaData method)

 	get_all_ksconf_cmds() (in module ksconf.command)

 	get_app_id() (ksconf.package.AppVarMagic method)

 	get_build() (ksconf.package.AppVarMagic method)

 	get_build_step() (ksconf.builder.core.BuildManager method)

 	get_cache_info() (ksconf.builder.core.BuildManager method)

 	get_command() (ksconf.commands.restexport.CurlCommand method)

 	get_deploy_action_class() (in module ksconf.app.deploy)

 	get_entrypoints() (in module ksconf.command)

 	get_entrypoints_fallback() (in module ksconf.setup_entrypoints)

 	get_entrypoints_setup() (in module ksconf.setup_entrypoints)

 	get_facts_manifest_from_archive() (in module ksconf.app)

 	get_file() (ksconf.layer.LayerRootBase method)

 	(ksconf.layer.LayerRootBase.Layer method)

 	get_fingerprint (ksconf.builder.cache.FileSet attribute)

 	get_git_head() (ksconf.package.AppVarMagic method)

 	get_git_last_rev() (ksconf.package.AppVarMagic method)

 	get_git_tag() (ksconf.package.AppVarMagic method)

 	get_layer() (ksconf.conf.meta.MetaData method)

 	
 	get_layers_by_name() (ksconf.layer.LayerRootBase method)

 	get_layers_hash() (ksconf.package.AppVarMagic method)

 	get_layers_list() (ksconf.package.AppVarMagic method)

 	get_logger() (ksconf.builder.BuildStep method)

 	get_merged_conf() (in module ksconf.package)

 	get_plugin_manager() (in module ksconf.hook)

 	get_stored_manifest_name() (in module ksconf.app.manifest)

 	get_value() (ksconf.commands.attr.AttrSetCmd method)

 	get_version() (ksconf.package.AppVarMagic method)

 	git_cmd() (in module ksconf.vc.git)

 	git_cmd_iterable() (in module ksconf.vc.git)

 	git_is_clean() (in module ksconf.vc.git)

 	git_is_working_tree() (in module ksconf.vc.git)

 	git_ls_files() (in module ksconf.vc.git)

 	git_single_line() (ksconf.package.AppVarMagic method)

 	git_status_summary() (in module ksconf.vc.git)

 	git_status_ui() (in module ksconf.vc.git)

 	git_version() (in module ksconf.vc.git)

 	GitCmdOutput (class in ksconf.vc.git)

 	GitNotAvailable

 	GLOBAL (ksconf.conf.delta.DiffLevel attribute)

 	guess_indent() (ksconf.xmlformat.SplunkSimpleXmlFormatter static method)

H

 	
 	handle_cmd_failed() (in module ksconf.cli)

 	handle_conf_file() (ksconf.commands.restpublish.RestPublishCmd method)

 	handle_merge_conf_files() (in module ksconf.combine)

 	handle_spec_concatenate() (in module ksconf.combine)

 	has_rules (ksconf.filter.FilteredList property)

 	hash (ksconf.app.deploy.DeployAction_ExtractFile attribute)

 	(ksconf.app.deploy.DeployAction_SourceReference attribute)

 	(ksconf.app.manifest.AppManifest property)

 	(ksconf.app.manifest.AppManifestFile attribute)

 	(ksconf.app.manifest.StoredArchiveManifest attribute)

 	hash_algorithm (ksconf.app.manifest.AppManifest attribute)

 	help (ksconf.command.KsconfCmd attribute)

 	(ksconf.commands.attr.AttrGetCmd attribute)

 	(ksconf.commands.attr.AttrSetCmd attribute)

 	(ksconf.commands.check.CheckCmd attribute)

 	(ksconf.commands.combine.CombineCmd attribute)

 	(ksconf.commands.diff.DiffCmd attribute)

 	(ksconf.commands.filter.FilterCmd attribute)

 	(ksconf.commands.merge.MergeCmd attribute)

 	(ksconf.commands.minimize.MinimizeCmd attribute)

 	(ksconf.commands.package.PackageCmd attribute)

 	(ksconf.commands.promote.PromoteCmd attribute)

 	(ksconf.commands.restexport.RestExportCmd attribute)

 	(ksconf.commands.restpublish.RestPublishCmd attribute)

 	(ksconf.commands.snapshot.SnapshotCmd attribute)

 	(ksconf.commands.sort.SortCmd attribute)

 	(ksconf.commands.unarchive.UnarchiveCmd attribute)

 	(ksconf.commands.xmlformat.XmlFormatCmd attribute)

I

 	
 	id (ksconf.app.facts.AppFacts attribute)

 	IGNORECASE (ksconf.filter.FilteredList attribute)

 	indent_tree() (ksconf.xmlformat.SplunkSimpleXmlFormatter class method)

 	inject_section_comments() (in module ksconf.conf.parser)

 	inputs_identical() (ksconf.builder.cache.CachedRun method)

 	INSERT (ksconf.conf.delta.DiffVerb attribute)

 	install_source_checksum (ksconf.app.facts.AppFacts attribute)

 	install_source_local_checksum (ksconf.app.facts.AppFacts attribute)

 	INVERT (ksconf.filter.FilteredList attribute)

 	is_configured (ksconf.app.facts.AppFacts attribute)

 	is_debug() (in module ksconf.consts)

 	is_disabled (ksconf.builder.cache.CachedRun property)

 	
 	is_disabled() (in module ksconf.commands.filter)

 	is_equal() (in module ksconf.conf.delta)

 	is_expired (ksconf.builder.cache.CachedRun property)

 	is_folders_set() (ksconf.builder.core.BuildManager method)

 	is_new (ksconf.builder.cache.CachedRun property)

 	is_quiet (ksconf.builder.BuildStep property)

 	is_verbose() (ksconf.builder.BuildStep method)

 	is_visible (ksconf.app.facts.AppFacts attribute)

 	items() (ksconf.conf.meta.MetaLayer method)

 	iter_all_files() (ksconf.layer.LayerRootBase method)

 	iter_files() (ksconf.layer.LayerRootBase.Layer method)

 	iter_raw() (ksconf.conf.meta.MetaData method)

J

 	
 	jinja2_env (ksconf.layer.LayerFile_Jinja2 property)

K

 	
 	keep_tags (ksconf.xmlformat.SplunkSimpleXmlFormatter attribute)

 	KEY (ksconf.conf.delta.DiffLevel attribute)

 	key (ksconf.conf.delta.DiffStzKey attribute)

 	keys() (ksconf.conf.parser.update_conf method)

 	
 ksconf

 	module

 	
 ksconf.app

 	module

 	
 ksconf.app.deploy

 	module

 	
 ksconf.app.facts

 	module

 	
 ksconf.app.manifest

 	module

 	
 ksconf.archive

 	module

 	
 ksconf.builder

 	module

 	
 ksconf.builder.cache

 	module

 	
 ksconf.builder.core

 	module

 	
 ksconf.builder.steps

 	module

 	
 ksconf.cli

 	module

 	
 ksconf.combine

 	module

 	
 ksconf.command

 	module

 	
 ksconf.commands

 	module

 	
 ksconf.commands.attr

 	module

 	
 ksconf.commands.check

 	module

 	
 ksconf.commands.combine

 	module

 	
 ksconf.commands.diff

 	module

 	
 ksconf.commands.filter

 	module

 	
 ksconf.commands.merge

 	module

 	
 ksconf.commands.minimize

 	module

 	
 ksconf.commands.package

 	module

 	
 ksconf.commands.promote

 	module

 	
 ksconf.commands.restexport

 	module

 	
 ksconf.commands.restpublish

 	module

 	
 ksconf.commands.snapshot

 	module

 	
 	
 ksconf.commands.sort

 	module

 	
 ksconf.commands.unarchive

 	module

 	
 ksconf.commands.xmlformat

 	module

 	
 ksconf.compat

 	module

 	
 ksconf.conf

 	module

 	
 ksconf.conf.delta

 	module

 	
 ksconf.conf.merge

 	module

 	
 ksconf.conf.meta

 	module

 	
 ksconf.conf.parser

 	module

 	
 ksconf.consts

 	module

 	
 ksconf.filter

 	module

 	
 ksconf.hook

 	module

 	
 ksconf.hookspec

 	module

 	
 ksconf.layer

 	module

 	
 ksconf.package

 	module

 	
 ksconf.setup_entrypoints

 	module

 	
 ksconf.util

 	module

 	
 ksconf.util.compare

 	module

 	
 ksconf.util.completers

 	module

 	
 ksconf.util.file

 	module

 	
 ksconf.util.rest

 	module

 	
 ksconf.util.terminal

 	module

 	
 ksconf.vc

 	module

 	
 ksconf.vc.git

 	module

 	
 ksconf.xmlformat

 	module

 	ksconf_cli_init() (ksconf.hookspec.KsconfHookSpecs static method)

 	ksconf_cli_modify_argparse() (ksconf.hookspec.KsconfHookSpecs static method)

 	ksconf_cli_process_args() (ksconf.hookspec.KsconfHookSpecs static method)

 	KsconfCmd (class in ksconf.command)

 	KsconfHookSpecs (class in ksconf.hookspec)

L

 	
 	label (ksconf.app.facts.AppFacts attribute)

 	launch() (ksconf.command.KsconfCmd method)

 	layer (ksconf.layer.LayerFile attribute)

 	layer_regex (ksconf.layer.DotDLayerRoot attribute)

 	LayerCombiner (class in ksconf.combine)

 	LayerCombinerException

 	LayerCombinerExceptionCode

 	LayerContext (class in ksconf.layer)

 	LayerException

 	LayerFile (class in ksconf.layer)

 	LayerFile_Jinja2 (class in ksconf.layer)

 	LayerFilter (class in ksconf.layer)

 	LayerRenderedFile (class in ksconf.layer)

 	LayerRootBase (class in ksconf.layer)

 	LayerRootBase.Layer (class in ksconf.layer)

 	LayerUsageException

 	lines (ksconf.vc.git.GitCmdOutput attribute)

 	List (in module ksconf.compat)

 	list_available_handlers() (ksconf.layer.FileFactory method)

 	
 	list_files() (ksconf.layer.LayerRootBase method)

 	(ksconf.layer.LayerRootBase.Layer method)

 	list_layer_names() (ksconf.layer.LayerRootBase method)

 	list_layers() (ksconf.layer.DotDLayerRoot method)

 	(ksconf.layer.LayerRootBase method)

 	list_logical_files() (ksconf.layer.LayerRootBase method)

 	list_physical_files() (ksconf.layer.LayerRootBase method)

 	list_vars() (ksconf.package.AppVarMagic method)

 	Literal (class in ksconf.commands.restexport)

 	load() (ksconf.builder.cache.CachedRun method)

 	(ksconf.setup_entrypoints.LocalEntryPoint method)

 	load_blocklist() (ksconf.commands.package.PackageCmd static method)

 	load_manifest_for_archive() (in module ksconf.app.manifest)

 	LocalEntryPoint (class in ksconf.setup_entrypoints)

 	location (ksconf.conf.delta.DiffOp attribute)

 	log() (ksconf.combine.LayerCombiner method)

 	logical_path (ksconf.layer.LayerFile property)

 	(ksconf.layer.LayerRenderedFile property)

 	(ksconf.layer.LayerRootBase.Layer attribute)

M

 	
 	make_archive() (ksconf.package.AppPackager method)

 	make_boolean() (ksconf.commands.restpublish.RestPublishCmd static method)

 	make_manifest() (ksconf.package.AppPackager method)

 	manifest (ksconf.app.manifest.StoredArchiveManifest property)

 	match() (ksconf.filter.FilteredList method)

 	(ksconf.layer.LayerFile static method)

 	(ksconf.layer.LayerFile_Jinja2 static method)

 	match_path() (ksconf.filter.FilteredList method)

 	match_stanza() (ksconf.filter.FilteredList method)

 	maturity (ksconf.command.KsconfCmd attribute)

 	(ksconf.commands.attr.AttrGetCmd attribute)

 	(ksconf.commands.attr.AttrSetCmd attribute)

 	(ksconf.commands.check.CheckCmd attribute)

 	(ksconf.commands.combine.CombineCmd attribute)

 	(ksconf.commands.diff.DiffCmd attribute)

 	(ksconf.commands.filter.FilterCmd attribute)

 	(ksconf.commands.merge.MergeCmd attribute)

 	(ksconf.commands.minimize.MinimizeCmd attribute)

 	(ksconf.commands.package.PackageCmd attribute)

 	(ksconf.commands.promote.PromoteCmd attribute)

 	(ksconf.commands.restexport.RestExportCmd attribute)

 	(ksconf.commands.restpublish.RestPublishCmd attribute)

 	(ksconf.commands.sort.SortCmd attribute)

 	(ksconf.commands.unarchive.UnarchiveCmd attribute)

 	(ksconf.commands.xmlformat.XmlFormatCmd attribute)

 	max_file_size (ksconf.commands.snapshot.ConfSnapshotConfig attribute)

 	MERGE (ksconf.conf.parser.DuplicateEnum attribute)

 	merge_app_local() (in module ksconf.conf.merge)

 	merge_conf_dicts() (in module ksconf.conf.merge)

 	merge_conf_files() (in module ksconf.conf.merge)

 	merge_local() (ksconf.package.AppPackager method)

 	merge_update_any_file() (in module ksconf.conf.merge)

 	merge_update_conf_file() (in module ksconf.conf.merge)

 	MergeCmd (class in ksconf.commands.merge)

 	MetaData (class in ksconf.conf.meta)

 	MetaLayer (class in ksconf.conf.meta)

 	MinimizeCmd (class in ksconf.commands.minimize)

 	mode (ksconf.app.deploy.DeployAction_ExtractFile attribute)

 	(ksconf.app.manifest.AppManifestFile attribute)

 	(ksconf.archive.GenArchFile attribute)

 	modify_jinja_env() (ksconf.hookspec.KsconfHookSpecs static method)

 	
 module

 	ksconf

 	ksconf.app

 	ksconf.app.deploy

 	ksconf.app.facts

 	ksconf.app.manifest

 	ksconf.archive

 	ksconf.builder

 	ksconf.builder.cache

 	ksconf.builder.core

 	ksconf.builder.steps

 	ksconf.cli

 	ksconf.combine

 	ksconf.command

 	ksconf.commands

 	ksconf.commands.attr

 	ksconf.commands.check

 	ksconf.commands.combine

 	ksconf.commands.diff

 	ksconf.commands.filter

 	ksconf.commands.merge

 	ksconf.commands.minimize

 	ksconf.commands.package

 	ksconf.commands.promote

 	ksconf.commands.restexport

 	ksconf.commands.restpublish

 	ksconf.commands.snapshot

 	ksconf.commands.sort

 	ksconf.commands.unarchive

 	ksconf.commands.xmlformat

 	ksconf.compat

 	ksconf.conf

 	ksconf.conf.delta

 	ksconf.conf.merge

 	ksconf.conf.meta

 	ksconf.conf.parser

 	ksconf.consts

 	ksconf.filter

 	ksconf.hook

 	ksconf.hookspec

 	ksconf.layer

 	ksconf.package

 	ksconf.setup_entrypoints

 	ksconf.util

 	ksconf.util.compare

 	ksconf.util.completers

 	ksconf.util.file

 	ksconf.util.rest

 	ksconf.util.terminal

 	ksconf.vc

 	ksconf.vc.git

 	ksconf.xmlformat

 	
 	module_name (ksconf.setup_entrypoints.Ep attribute)

 	mount_regex (ksconf.layer.DotDLayerRoot attribute)

 	mtime (ksconf.app.deploy.DeployAction_ExtractFile attribute)

 	(ksconf.app.manifest.StoredArchiveManifest attribute)

 	(ksconf.conf.delta.DiffHeader attribute)

 	(ksconf.layer.LayerFile property)

N

 	
 	name (ksconf.app.deploy.DeployAction_SetAppName attribute)

 	(ksconf.app.facts.AppFacts attribute)

 	(ksconf.app.manifest.AppManifest attribute)

 	(ksconf.conf.delta.DiffHeader attribute)

 	(ksconf.layer.LayerRootBase.Layer attribute)

 	(ksconf.setup_entrypoints.Ep attribute)

 	
 	NOCHANGE (ksconf.consts.SmartEnum attribute)

 	normalize_directory_mtime() (in module ksconf.package)

O

 	
 	object_name (ksconf.setup_entrypoints.Ep attribute)

 	order_layers() (ksconf.layer.DirectLayerRoot method)

 	(ksconf.layer.DotDLayerRoot method)

 	(ksconf.layer.LayerRootBase method)

 	
 	output() (ksconf.commands.filter.FilterCmd method)

 	OVERWRITE (ksconf.conf.parser.DuplicateEnum attribute)

P

 	
 	package_pre_archive() (ksconf.hookspec.KsconfHookSpecs static method)

 	PackageCmd (class in ksconf.commands.package)

 	PackagingException

 	parse_conf() (in module ksconf.conf.parser)

 	(ksconf.command.KsconfCmd method)

 	parse_conf_stream() (in module ksconf.conf.parser)

 	parse_extra_vars() (ksconf.command.KsconfCmd method)

 	parse_meta() (ksconf.conf.meta.MetaData class method)

 	parse_string() (in module ksconf.conf.parser)

 	path (ksconf.app.deploy.DeployAction_ExtractFile attribute)

 	(ksconf.app.deploy.DeployAction_RemoveFile attribute)

 	(ksconf.app.manifest.AppManifestFile attribute)

 	(ksconf.archive.GenArchFile attribute)

 	payload (ksconf.archive.GenArchFile attribute)

 	physical_path (ksconf.layer.LayerFile property)

 	(ksconf.layer.LayerRenderedFile property)

 	(ksconf.layer.LayerRootBase.Layer attribute)

 	pip_install() (in module ksconf.builder.steps)

 	post_combine() (ksconf.combine.LayerCombiner method)

 	(ksconf.commands.combine.RepeatableCombiner method)

 	(ksconf.hookspec.KsconfHookSpecs static method)

 	
 	post_run() (ksconf.command.KsconfCmd method)

 	pre_combine_inventory() (ksconf.combine.LayerCombiner method)

 	(ksconf.commands.combine.RepeatableCombiner method)

 	pre_commit_repo_migration_warning() (ksconf.commands.xmlformat.XmlFormatCmd method)

 	pre_run() (ksconf.command.KsconfCmd method)

 	(ksconf.commands.attr.AttrGetCmd method)

 	(ksconf.commands.check.CheckCmd method)

 	(ksconf.commands.merge.MergeCmd method)

 	(ksconf.commands.package.PackageCmd method)

 	(ksconf.commands.sort.SortCmd method)

 	prep_filters() (ksconf.commands.filter.FilterCmd method)

 	(ksconf.commands.promote.PromoteCmd method)

 	prepare() (ksconf.combine.LayerCombiner method)

 	prepare_target_dir() (ksconf.combine.LayerCombiner method)

 	(ksconf.commands.combine.RepeatableCombiner method)

 	PromoteCmd (class in ksconf.commands.promote)

 	prune_points (ksconf.layer.DotDLayerRoot.Layer attribute)

 	publish_conf() (ksconf.commands.restpublish.RestPublishCmd method)

Q

 	
 	quote() (ksconf.commands.restexport.CurlCommand class method)

R

 	
 	read_json_manifest() (ksconf.app.manifest.StoredArchiveManifest class method)

 	readlines() (ksconf.xmlformat.FileReadlinesCache method)

 	recalculate_hash() (ksconf.app.manifest.AppManifest method)

 	reduce_stanza() (in module ksconf.conf.delta)

 	regex_access (ksconf.conf.meta.MetaData attribute)

 	register_args() (ksconf.command.KsconfCmd method)

 	(ksconf.commands.attr.AttrGetCmd method)

 	(ksconf.commands.attr.AttrSetCmd method)

 	(ksconf.commands.check.CheckCmd method)

 	(ksconf.commands.combine.CombineCmd method)

 	(ksconf.commands.diff.DiffCmd method)

 	(ksconf.commands.filter.FilterCmd method)

 	(ksconf.commands.merge.MergeCmd method)

 	(ksconf.commands.minimize.MinimizeCmd method)

 	(ksconf.commands.package.PackageCmd method)

 	(ksconf.commands.promote.PromoteCmd method)

 	(ksconf.commands.restexport.RestExportCmd method)

 	(ksconf.commands.restpublish.RestPublishCmd method)

 	(ksconf.commands.snapshot.SnapshotCmd method)

 	(ksconf.commands.sort.SortCmd method)

 	(ksconf.commands.unarchive.UnarchiveCmd method)

 	(ksconf.commands.xmlformat.XmlFormatCmd method)

 	register_file_handler() (in module ksconf.layer)

 	register_handler() (in module ksconf.combine)

 	(ksconf.combine.LayerCombiner class method)

 	(ksconf.layer.FileFactory method)

 	rel_path (ksconf.app.deploy.DeployAction_ExtractFile attribute)

 	relative_path (ksconf.layer.LayerFile attribute)

 	ReluctantWriter (class in ksconf.util.file)

 	relwalk() (in module ksconf.util.file)

 	REMOVE_FILE (ksconf.app.deploy.DeployActionType attribute)

 	rename() (ksconf.builder.cache.CachedRun method)

 	render() (ksconf.layer.LayerFile_Jinja2 method)

 	(ksconf.layer.LayerRenderedFile method)

 	
 	RepeatableCombiner (class in ksconf.commands.combine)

 	REPLACE (ksconf.conf.delta.DiffVerb attribute)

 	require_active_context() (ksconf.package.AppPackager method)

 	reset() (ksconf.util.terminal.TermColor method)

 	reset_counters() (ksconf.filter.FilteredList method)

 	(ksconf.filter.FilteredListRegex method)

 	(ksconf.filter.FilteredListString method)

 	resolve() (ksconf.conf.meta.MetaLayer method)

 	resolve_source() (ksconf.app.deploy.DeployApply method)

 	resource_path (ksconf.layer.LayerFile property)

 	(ksconf.layer.LayerRenderedFile property)

 	RestExportCmd (class in ksconf.commands.restexport)

 	RestPublishCmd (class in ksconf.commands.restpublish)

 	returncode (ksconf.vc.git.GitCmdOutput attribute)

 	root (ksconf.builder.cache.CachedRun attribute)

 	(ksconf.layer.LayerRootBase.Layer attribute)

 	run() (ksconf.builder.BuildStep method)

 	(ksconf.command.KsconfCmd method)

 	(ksconf.commands.attr.AttrGetCmd method)

 	(ksconf.commands.attr.AttrSetCmd method)

 	(ksconf.commands.check.CheckCmd method)

 	(ksconf.commands.combine.CombineCmd method)

 	(ksconf.commands.diff.DiffCmd method)

 	(ksconf.commands.filter.FilterCmd method)

 	(ksconf.commands.merge.MergeCmd method)

 	(ksconf.commands.minimize.MinimizeCmd method)

 	(ksconf.commands.package.PackageCmd method)

 	(ksconf.commands.promote.PromoteCmd method)

 	(ksconf.commands.restexport.RestExportCmd method)

 	(ksconf.commands.restpublish.RestPublishCmd method)

 	(ksconf.commands.snapshot.SnapshotCmd method)

 	(ksconf.commands.sort.SortCmd method)

 	(ksconf.commands.unarchive.UnarchiveCmd method)

 	(ksconf.commands.xmlformat.XmlFormatCmd method)

 	run_ksconf() (ksconf.builder.BuildStep method)

S

 	
 	sanity_checker() (in module ksconf.archive)

 	schema_version (ksconf.commands.snapshot.ConfSnapshot attribute)

 	section_reader() (in module ksconf.conf.parser)

 	secure_delete() (in module ksconf.util.file)

 	Set (in module ksconf.compat)

 	SET_APP_NAME (ksconf.app.deploy.DeployActionType attribute)

 	set_cache_info() (ksconf.builder.cache.CachedRun method)

 	set_conf_value() (ksconf.commands.attr.AttrSetCmd method)

 	set_folders() (ksconf.builder.core.BuildManager method)

 	set_layer_root() (ksconf.combine.LayerCombiner method)

 	set_root() (ksconf.layer.DotDLayerRoot method)

 	set_settings() (ksconf.builder.cache.CachedRun method)

 	set_source_dirs() (ksconf.combine.LayerCombiner method)

 	show_diff() (in module ksconf.conf.delta)

 	show_text_diff() (in module ksconf.conf.delta)

 	size (ksconf.app.manifest.AppManifestFile attribute)

 	(ksconf.app.manifest.StoredArchiveManifest attribute)

 	(ksconf.archive.GenArchFile attribute)

 	(ksconf.layer.LayerFile property)

 	smart_copy() (in module ksconf.util.file)

 	smart_write_conf() (in module ksconf.conf.parser)

 	SmartEnum (class in ksconf.consts)

 	snapshot_dir() (ksconf.commands.snapshot.ConfSnapshot method)

 	snapshot_file_conf() (ksconf.commands.snapshot.ConfSnapshot method)

 	
 	SnapshotCmd (class in ksconf.commands.snapshot)

 	SortCmd (class in ksconf.commands.sort)

 	source (ksconf.app.manifest.AppManifest attribute)

 	source_path (ksconf.builder.BuildStep attribute)

 	SOURCE_REFERENCE (ksconf.app.deploy.DeployActionType attribute)

 	spec_file_re (ksconf.combine.LayerCombiner attribute)

 	splglob_simple() (in module ksconf.util.file)

 	splglob_to_regex() (in module ksconf.util.file)

 	splitup_kvpairs() (in module ksconf.conf.parser)

 	SplunkSimpleXmlFormatter (class in ksconf.xmlformat)

 	STANZA (ksconf.conf.delta.DiffLevel attribute)

 	stanza (ksconf.conf.delta.DiffStanza attribute)

 	(ksconf.conf.delta.DiffStzKey attribute)

 	stat (ksconf.layer.LayerFile property)

 	state (ksconf.app.facts.AppFacts attribute)

 	state_change_requires_restart (ksconf.app.facts.AppFacts attribute)

 	STATE_DISABLED (ksconf.builder.cache.CachedRun attribute)

 	STATE_EXISTS (ksconf.builder.cache.CachedRun attribute)

 	STATE_NEW (ksconf.builder.cache.CachedRun attribute)

 	STATE_TAINT (ksconf.builder.cache.CachedRun attribute)

 	stderr (ksconf.vc.git.GitCmdOutput attribute)

 	stdout (ksconf.vc.git.GitCmdOutput attribute)

 	StoredArchiveManifest (class in ksconf.app.manifest)

 	subtype (ksconf.app.deploy.DeployAction_ExtractFile attribute)

 	summarize_cfg_diffs() (in module ksconf.conf.delta)

T

 	
 	tag (ksconf.conf.delta.DiffOp attribute)

 	taint() (ksconf.builder.cache.CachedRun method)

 	taint_cache() (ksconf.builder.core.BuildManager method)

 	template_variables (ksconf.layer.LayerContext attribute)

 	TermColor (class in ksconf.util.terminal)

 	to_dict() (ksconf.app.deploy.DeployAction method)

 	(ksconf.app.deploy.DeploySequence method)

 	(ksconf.app.facts.AppFacts method)

 	(ksconf.app.manifest.AppManifest method)

 	(ksconf.app.manifest.AppManifestFile method)

 	(ksconf.app.manifest.StoredArchiveManifest method)

 	
 	to_tiny_dict() (ksconf.app.facts.AppFacts method)

 	Token (class in ksconf.conf.parser)

 	transform_name() (ksconf.layer.LayerFile_Jinja2 static method)

 	(ksconf.layer.LayerRenderedFile static method)

 	Tuple (in module ksconf.compat)

 	type (ksconf.conf.delta.DiffGlobal attribute)

 	(ksconf.conf.delta.DiffStanza attribute)

 	(ksconf.conf.delta.DiffStzKey attribute)

U

 	
 	UnarchiveCmd (class in ksconf.commands.unarchive)

 	UPDATE (ksconf.consts.SmartEnum attribute)

 	update() (ksconf.conf.meta.MetaLayer method)

 	(ksconf.conf.parser.update_conf method)

 	
 	update_app_conf() (ksconf.package.AppPackager method)

 	update_conf (class in ksconf.conf.parser)

 	use_secure_delete (ksconf.layer.LayerRenderedFile attribute)

V

 	
 	VERBOSE (ksconf.filter.FilteredList attribute)

 	verbosity (ksconf.builder.BuildStep attribute)

 	
 	version (ksconf.app.facts.AppFacts attribute)

 	version_extra (ksconf.command.KsconfCmd attribute)

W

 	
 	walk() (ksconf.conf.meta.MetaData method)

 	(ksconf.conf.meta.MetaLayer method)

 	(ksconf.layer.DotDLayerRoot.Layer method)

 	(ksconf.layer.LayerRootBase.Layer method)

 	write() (ksconf.util.terminal.TermColor method)

 	
 	write_conf() (in module ksconf.conf.parser)

 	write_conf_stream() (in module ksconf.conf.parser)

 	write_diff_as_json() (in module ksconf.conf.delta)

 	write_json_manifest() (ksconf.app.manifest.StoredArchiveManifest method)

 	write_snapshot() (ksconf.commands.snapshot.ConfSnapshot method)

 	write_stream() (ksconf.conf.meta.MetaData method)

X

 	
 	XmlFormatCmd (class in ksconf.commands.xmlformat)

 nav.xhtml

 Table of Contents

 		
 Ksconf Splunk CONFiguration tool

 		
 Introduction

 		
 Design principles

 		
 Common uses for Ksconf

 		
 Getting started

 		
 Concepts

 		
 Configuration layers

 		
 Minimizing files

 		
 Installation Guide

 		
 Overview

 		
 Requirements

 		
 Install Splunk App

 		
 Install Python package

 		
 Quick Install

 		
 Enable Bash Completion

 		
 Ran into issues?

 		
 Install from GIT

 		
 Validate the install

 		
 Missing 3rd party libraries

 		
 Other issues

 		
 Command line completion

 		
 Commands

 		
 Cheat Sheet

 		
 General purpose

 		
 Extracting a single value

 		
 Updating a single value

 		
 Comparing files

 		
 Sorting content

 		
 Extract specific stanza

 		
 Remove unwanted settings

 		
 List apps configured in the deployment server

 		
 Find saved searches with earliest=-1d@d

 		
 Cleaning up

 		
 Reduce cruft in local

 		
 Pushing local changes to default

 		
 Packaging and building apps

 		
 Quick package and install

 		
 Advanced usage

 		
 Migrating content between apps

 		
 Migrating the ‘users’ folder

 		
 Maintaining apps stored in a local git repository

 		
 Putting it all together

 		
 Pulling out a stanza defined in both default and local

 		
 Building an all-in one TA for your indexing tier

 		
 Plugins

 		
 Using plugins

 		
 Troubleshooting

 		
 Review hook execution

 		
 Disable individual plugins

 		
 List of plugins

 		
 Plugin examples

 		
 Modify Jinja Environment

 		
 Packaging a Plugin

 		
 Contributing

 		
 Pre-commit hook

 		
 Installing the pre-commit hook

 		
 Install gitlint

 		
 Refresh module listing

 		
 Create a new subcommand

 		
 Cookiecutter options

 		
 Developer setup

 		
 Tools

 		
 Install ksconf

 		
 Building the docs

 		
 Running TOX

 		
 Git tips & tricks

 		
 Pre-commit hooks

 		
 Hooks provided by ksconf

 		
 Repository Change

 		
 Configuring pre-commit hooks in you repo

 		
 Should my version of ksconf and pre-commit plugins be the same?

 		
 Git configuration tweaks

 		
 Ksconf as external difftool

 		
 Stanza aware textual diffs

 		
 Git tricks

 		
 Avoid replicating the .git folder

 		
 Random

 		
 Typographic and Convention

 		
 How Splunk writes to conf files

 		
 Grandfather Paradox

 		
 Contact

 		
 Command line reference

 		
 ksconf

 		
 ksconf attr-get

 		
 ksconf attr-set

 		
 ksconf check

 		
 ksconf combine

 		
 ksconf diff

 		
 ksconf filter

 		
 ksconf merge

 		
 ksconf minimize

 		
 ksconf package

 		
 ksconf promote

 		
 ksconf rest-export

 		
 ksconf rest-publish

 		
 ksconf snapshot

 		
 ksconf sort

 		
 ksconf unarchive

 		
 ksconf xml-format

 		
 Changelog

 		
 Ksconf 0.13

 		
 Ksconf v0.13.1 (2023-10-05)

 		
 Ksconf v0.13.0 (2023-10-05)

 		
 Ksconf 0.12

 		
 Ksconf v0.12.2 (2023-10-05)

 		
 Ksconf v0.12.1 (2023-10-03)

 		
 Ksconf v0.12.0 (2023-09-27)

 		
 Ksconf 0.11

 		
 Ksconf v0.11.9 (2023-09-26)

 		
 Ksconf v0.11.7 (2023-09-20)

 		
 Ksconf v0.11.6 (2023-09-20)

 		
 Ksconf v0.11.5 (2023-08-25)

 		
 Ksconf v0.11.4 (2023-06-09)

 		
 Ksconf v0.11.3 (2023-05-17)

 		
 Ksconf v0.11.0 (2023-05-13)

 		
 Ksconf 0.10

 		
 Ksconf v0.10.2 (2023-05-13)

 		
 Ksconf v0.10.1 (2023-03-07)

 		
 Ksconf v0.10.0 (2023-03-03)

 		
 Ksconf 0.9

 		
 Ksconf v0.9.3 (2022-02-26)

 		
 Ksconf v0.9.2 (2022-03-04)

 		
 Ksconf v0.9.1 (2022-03-03)

 		
 Ksconf v0.9.0 (2021-08-12)

 		
 Ksconf 0.8

 		
 Ksconf v0.8.7 (2020-04-29)

 		
 Ksconf v0.8.6 (2020-04-20)

 		
 Ksconf v0.8.5 (2020-04-07)

 		
 Ksconf v0.8.4 (2020-03-22)

 		
 Ksconf v0.8.3 (2021-03-20)

 		
 Ksconf v0.8.1 (2021-03-20)

 		
 Ksconf v0.8.0 (2021-03-19)

 		
 Ksconf 0.7.x

 		
 Release v0.7.10 (2021-03-19)

 		
 Release v0.7.9 (2020-09-23)

 		
 Release v0.7.8 (2020-06-19)

 		
 Release v0.7.7 (2020-03-05)

 		
 Release v0.7.6 (2019-08-15)

 		
 Release v0.7.5 (2019-07-03)

 		
 Release v0.7.4 (2019-06-07)

 		
 Release v0.7.3 (2019-06-05)

 		
 Release v0.7.2 (2019-03-22)

 		
 Release v0.7.1 (2019-03-13)

 		
 Release v0.7.0 (2019-02-27)

 		
 Ksconf 0.6.x

 		
 Release v0.6.2 (2019-02-09)

 		
 Release v0.6.1 (2019-02-07)

 		
 Release v0.6.0 (2019-02-06)

 		
 Ksconf 0.5.x

 		
 Release v0.5.6 (2019-02-04)

 		
 Release v0.5.5 (2019-01-28)

 		
 Release v0.5.4 (2019-01-04)

 		
 Release v0.5.3 (2018-11-02)

 		
 Release v0.5.2 (2018-08-13)

 		
 Release v0.5.1 (2018-06-28)

 		
 Release v0.5.0 (2018-06-26)

 		
 Ksconf 0.4.x

 		
 Release v0.4.10 (2018-06-26)

 		
 Release v0.4.9 (2018-06-05)

 		
 Release v0.4.8 (2018-06-05)

 		
 Release v0.4.4-v0.4.7 (2018-06-04)

 		
 Release v0.4.3 (2018-06-04)

 		
 Release v0.4.2 (2018-06-04)

 		
 Release v0.4.1 (2018-06-04)

 		
 Release v0.4.0 (2018-05-19)

 		
 Ksconf 0.3.x

 		
 Release v0.3.2 (2018-04-24)

 		
 Release v0.3.1 (2018-04-21)

 		
 Release v0.3.0 (2018-04-21)

 		
 Ksconf legacy releases

 		
 Release legacy-v1.0.1 (2018-04-20)

 		
 Release legacy-v1.0.0 (2018-04-16)

 		
 Known issues

 		
 General

 		
 Splunk app

 		
 Advanced Installation Guide

 		
 Flowchart

 		
 Installation

 		
 Install from PyPI with PIP

 		
 CentOS (RedHat derived) distros

 		
 Offline installation

 		
 Offline installation steps

 		
 Offline installation of pip

 		
 Frequent gotchas

 		
 PIP Install TLS Error

 		
 No module named ‘command.install’

 		
 Troubleshooting

 		
 Check Python version

 		
 Check PIP Version

 		
 Validate the install

 		
 Resources

 		
 License

 		
 API Reference

 		
 KSCONF API

 		
 ksconf

 		
 Build example

_images/logo.png

_static/minus.png

_static/plus.png

_static/file.png

